sbr污水处理工艺总结
时间过得很快,四季轮回的过程中,一年忙碌的工作时间结束。在这一年的工作中,大家通过工作,可学到更多方面的工作知识,也留下了众多的学习回忆。为记录这一年的成长,可编写一份年终总结。以下是小编精心整理的《sbr污水处理工艺总结》,供需要的小伙伴们查阅,希望能够帮助到大家。
第一篇:sbr污水处理工艺总结
SBR污水处理工艺总结
http:// 2007-3-27 中国环保网
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 与传污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。正是SBR工艺这些特殊性使其具有以下优点:
1、 理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、 运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、 耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、 工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、 处理设备少,构造简单,便于操作和维护管理。
6、 反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、 脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、 工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围
由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。就近期的技术条件,SBR统更适合以下情况:
1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的收利用。
4) 用地紧张的地方。
5) 对已建连续流污水处理厂的改造等。
6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
SBR设计要点、主要参数
SBR设计要点
1、运行周期(T)的确定
SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。充水时(tv)应有一个最优值。如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。充水时间一般取1~4h。应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲置时间(tE)一般按2h设计。
一个周期所需时间tC≥tR﹢tS﹢tD 周期数 n﹦24/tC
2、反应池容积的计算
假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n·N。各反应池的容积为:
V:各反应池的容量 1/m:排出比 n:周期数(周期/d) N:每一系列的反应池数量
q:每一系列的污水进水量(设计最大日污水量)(m3/d)
3、曝气系统
序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。
在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。
4、排水系统
⑴上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,出方式有重力排出和水泵排出。
⑵为预防上清液排出装置的故障,应设置事故用排水装置。
⑶在上清液排出装置中,应设有防浮渣流出的机构。
序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的征:
1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。(定量排水) 2) 为获得分离后清澄的处理水,集水机构应尽量靠近水面,并可随上清液排出后的水位变化而进行排水。(追随水位的性能)
3) 排水及停止排水的动作应平稳进行,动作准确,持久可靠。(可靠性)
排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。
5、排泥设备
设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000 在高负荷运行(0.1~0.4 kg-BOD/kg-ss·d)时污泥产量以每流入1 kgSS产生1 kg计算,在低负荷运行(0.03~0.1 kg-BOD/kg-ss·d)时以每流入1 kgSS产生0.75 kg计算。
在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
SBR设计主要参数
序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理处理水质指标等)适当的确定。
用于设施设计的设计参数应以下值为准:
项 目 参 数 BOD-SS负荷(kg-BOD/kg-ss·d) 0.03~0.4 MLSS(mg/l) 1500~5000 排出比(1/m) 1/2~1/6 安全高度ε(cm)(活性污泥界面以上的最小水深) 50以上
序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。序批式活性污泥法的BOD-SS负荷,由于将曝气间作为反应时间来考虑,定义公式如下: QS:污水进水量(m3/d) CS:进水的平均BOD5(mg/l) CA:曝气池内混合液平均MLSS浓度(mg/l) V:曝气池容积
e:曝气时间比 e=n·TA/24
n:周期数 TA:一个周期的曝气时间
序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。
在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。
在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。
不同负荷条件下的特征
有机物负荷条件(进水条件) 高负荷运行 低负荷运行
间歇进水 间歇进水、连续
运行条件 BOD-SS负荷(kg-BOD/kg-ss·d) 0.1~0.4 0.03~0.1 周期数 大(3~4) 小(2~3) 排出比 大 小
处理特性 有机物去除 处理水BOD<20mg/l 去除率比较高
脱氮 较低 高
脱磷 高 较低
污泥产量 多 少
维护管理 抗负荷变化性能比低负荷差 对负荷变化的适应性强,运行的灵活性强
用地面积 反应池容积小,省地 反应池容积较大
适用范围 能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施 适于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施
SBR设计需特别注意的问题
(一)主要设施与设备
1、设施的组成
本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中
为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池
反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。
反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相
应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。
反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。
反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置
排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。
在设定一个周期的排水时间时,必须注意以下项目:
①上清液排出装置的溢流负荷——确定需要的设备数量;
②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;
③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;
④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始水符合SBR法的运行原理。
SBR工艺的需氧与供氧
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。
SBR工艺排出比(1/m)的选择
SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始机物浓度低,反之则高。根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。此外不同的废水活性污泥的沉降性能也不同。污泥沉降性能
好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。
SBR反应池混合液污泥浓度
根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。此外,池内混合液污泥浓度的大小还决定了沉淀时间。污泥浓度高需要的沉淀时间长,反之则短。当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。
关于污泥负荷率的选择
污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时污泥负荷率随着增大。污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。
排水时间由滗水器的性能决定,滗水结束可以通过液位控制。
闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
SBR调试程序及注意事项
(一) 活性污泥的培养驯化
SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。
活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。
培养活性污泥需要有菌种和菌种所需要的营养物。对于城市污水,其中的菌种和营养都具备,可以直接进行培养。对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。
(二) 试运行
活性污泥培养驯化成熟后,就开始试运行。试运行的目的使确定最佳的运行条件。
在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。活性污泥法要求在曝气池内保持适宜的营养物与微生物的比值,供给所需要的氧,使微生物很好的和有机物相接触,全体均匀的保持适当的接触时间。
对SBR处理工艺而言,运行周期的确定还与沉淀、排水排泥时间及闲置时间有关,还和处理工艺中所设计的SBR反应器数量有关。运行周期的确定除了要保证处理过程中运行的稳定性和处理效果外,还要保证每个池充水的顺序连续性,即合理的运行周期应满足运行过程中避免两个或两个以上的池子同时进水或第一个池子和最后一个池子进水脱节的现象。同时通过改变曝气时间和排水时间,对污水进行不同的反应测试,确定最佳的运行模式,达到最佳的出水水质、最经济的运行方式
(三) 污泥沉降性能的控制
活性污泥的良好沉降性能是保证活性污泥处理系统正常运行的前提条件之一。如果污泥的沉降性能不好,在SBR的反应期结束后,污泥难以沉淀,污泥的压密性差,上层清液的排除就受到限制水泥比下降,导致每个运行周期处理污水量下降。如果污泥的絮凝性能差,则出水中的悬浮固体(S含量将升高,COD上升,导致处理出水水质的下降。
导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。SBR工中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的因而发生污泥丝状菌膨胀的可能性是非常低的。SBR较容易出现高粘性膨胀问题。这可能是由于S法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。
污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。
第二篇:污水处理工艺方法大总结
污水处理工艺就是对城市生活污水和工业废水的各种经济、合理、科学、行之有效的工艺方法。
根据《水污染控制工程》分类 不溶态污染物的分离技术:
1、重力沉降:沉砂池(平流、竖流、旋流、曝气)、沉淀池(平流、竖流、辐流、斜流);
2、混凝澄清;
3、浮力浮上法:隔油、气浮;
4、其他:阻力截留、离心力分离法、磁力分离法
污染物的生物化学转化技术:
1、活性污泥法:SBR、AO、AAO、氧化沟等
2、生物膜法:生物滤池、生物转盘、生物接触氧化池等
3、厌氧生物处理法:厌氧消化、水解酸化池、UASB等
4、自然条件下的生物处理法:稳定塘、生态系统塘、土地处理法
污染物的化学转化技术:
1、中和法:酸碱中和
2、化学沉淀法:氢氧化物沉淀、铁氧体沉淀、其他化学沉淀
3、氧化还原法:药剂氧化法、药剂还原法、电化学法
4、化学物理消毒法:臭氧、紫外线、二氧化氯、氯气、次氯酸钠
溶解态污染物的物理化学分离技术:
1、吸附法
2、离子交换法
3、膜分离法:扩散渗析、电渗析、反渗透、超滤、纳滤、微滤
4、其他分离方法:吹脱和气提、萃取、蒸发、结晶、冷冻
常见污水处理方法
物理法:物理或机械的分离过程。过滤,沉淀,离心分离,上浮等
化学法:加入化学物质与污水中有害物质发生化学反应的转化过程。中和,氧化,还原,分解,混凝,化学沉淀等
物理化学法:物理化学的分离过程。气提,吹脱,吸附,萃取,离子交换,电解电渗析,反渗透等
生物法:微生物在污水中对有机物进行氧化,分解的新陈代谢过程。活性污泥,生物滤池,生物转盘,氧化塘,厌气消化等
常用处理废水的化学方法:
1、 混凝
向胶状浑浊液中投加电解质,凝聚水中胶状物质,使之和水分开
混凝剂有硫酸铝,明矾,聚合氯化铝,硫酸亚铁,三氯化铁等
含油废水,染色废水,煤气站废水,洗毛废水等
2、 中和
酸碱中和,pH达中性
石灰,石灰石,白云石等中和酸性废水,CO2中和碱性废水
硫酸厂废水用石灰中和,印染废水等
3、 氧化还原
投加氧化(或还原)剂,将废水中物质氧化(或还原)为无害物质
氧化剂有空气(O2),漂白粉,氯气,臭氧等
含酚,氰化物,硫铬,汞废水,印染,医院废水等
4、 电解
在废水中插入电极板,通电后,废水中带电离子变为中性原子
电源,电极板等
含铬含氰(电镀)废水,毛纺废水
5、 萃取
将不溶于水的溶剂投入废水中,使废水中的溶质溶于此溶剂中,然后利用溶剂与水的相对密度差,将溶剂分离出来
萃取剂:醋酸丁酯,苯,N—503等设备有脉冲筛板塔,离心萃取机等
含酚废水等
吸附(包含离子交换)
将废水通过固体吸附剂,使废水中溶解的有机或无机物吸附在吸附剂上,通过的废水得到处理
吸附剂有活性炭,煤渣,土壤等
吸附塔,再生装置
染色,颜料废水,还可吸附酚,汞,铬,氰以及除色,臭,味等用于深度处理。
【污水处理工艺流程】
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
第三篇:热处理工艺总结
1.退火
将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料 2.一般在毛坯状态进行退火 。
2.正火
将钢件加热到Ac3以上30~50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火
将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。 4.回火
将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。
目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和韧性,获得工作所要求的力学性能;3.稳定工件尺寸。
应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。
5.调质
淬火后高温回火称调质,即将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。
目的:1.改善切削加工性能,提高加工表面光洁程度;2.减小淬火时的变形和开裂;3.获得良好的综合力学性能。
应用要点:1.适用于淬透性较高的合金结构钢、合金工具钢和高速钢;2. 不仅可以作为各种较为重要结构的最后热处理,而且还可以作为某些紧密零件,如丝杠等的预先热处理,以减小变形。
6.时效
将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。
目的:1. 稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工后的内应力,稳定形状和尺寸。
应用要点:1. 适用于经淬火后的各钢种;2.常用于要求形状不再发生变化的紧密工件,如紧密丝杠、测量工具、床身机箱等。
7.冷处理 将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀一致后取出均温到室温。
目的:1.使淬火钢件内的残余奥氏体全部或大部转换为马氏体,从而提高钢件的硬度、强度、耐磨性和疲劳极限;2. 稳定钢的组织 ,以稳定钢件的形状和尺寸。
应用要点:1.钢件淬火后应立即进行冷处理,然后再经低温回火,以消除低温冷却时的内应力;2.冷处理主要适用于合金钢制的紧密刀具、量具和紧密零件。
8.火焰加热表面淬火
用氧-乙炔混合气体燃烧的火焰,喷射到钢件表面上,快速加热,当达到淬火温度后立即喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍保持韧性状态。
应用要点:1.多用于中碳钢制件,一般淬透层深度为2~6mm;2.适用于单件或小批量生产的大型工件和需要局部淬火的工件。
9.感应加热表面淬火
将钢件放入感应器中,使钢件表层产生感应电流,在极短的时间内加热到淬火温度,然后喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部保持韧性状态。
应用要点:1.多用于中碳钢和中堂合金结构钢制件;2. 由于肌肤效应,高频感应淬火淬透层一般为1~2mm,中频淬火一般为3~5mm,高频淬火一般大于10mm.
10.渗碳
将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面获得一定浓度和深度的渗碳层。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍然保持韧性状态。
应用要点:1.用于含碳量为0.15%~0.25%的低碳钢和低合金钢制件,一般渗碳层深度为0.5~2.5mm;2.渗碳后必须进行淬火,使表面得到马氏体,才能实现渗碳的目的。
第四篇:天然气处理与加工工艺总结
—.填空
1.天然气的分类:
(1)按产状分类,游离气和溶解气
(2)按经济价值分类,常规天然气和非常规天然气
(3)按来源分类,与油有关的气,与煤有关的气,天然沼气,深源气,化合物气
(4)按组成分类,a,以天然气中烃类组成:干气,湿气,贫气,富气.b,以天然气中硫化氢、二氧化硫含量分类:净气,酸气。
(5)我国习惯分法,伴生气,气藏气和凝析气
2.天然气的主要产品:液化天然气,液化石油气,天然气凝液,天然气油,压缩天然气
3.冷却脱水的方法:直接冷却法,加压冷却法,膨胀制冷冷却法,机械制冷冷却法
天然气脱水的方法:冷却法,吸收法和吸附法
4.常用的脱水吸附剂:活性铝土、活性氧化铝、硅胶和分子筛
5.固体吸附剂的吸附容量与被吸附气体的特性和分压,固体吸附剂的特性,比表面积和空隙
率以及吸附温度等有关。
6.天然气液回收方法:吸附法、油吸收法、冷凝分离法。
目的:生产管输气、满足商品气的质量要求、最大程度的回收天然气液。
7.尾气处理方法:从类型上可分为干法、湿法和直接灼烧法三类。除灼烧法外,按其基本原
理又可分为延续反应法、H2S回收法和SO2回收法三类。SO2回收率不可能超过100%。
8.吸附剂/催化剂需要再生:Sulfreen法
还原---吸收法:SCOT法
氧化---吸收法:Wellman-Lord
二.选择
1.天然气的主要成分是甲烷,此外还有乙烷,丙烷,丁烷,戊烷及己烷以上的烃类
2.天然气处理与加工含义:
(1)天然气加工是指从天然气中分离,回收某些组分,使之成为产品的那些工艺过程
(2)天然气处理是指使天然气符合商品质量和管道运输要求所采取的工艺过程
3.烃露点:在一定压力下,天然气中烃类开始冷凝的温度
水露点:在一定压力下,天然气中水蒸气开始冷凝的温度
4.华白指数:是代表燃气特性的一个参数,是燃气互换性的一个判定指数
5.预测天然气水含量的方法:图解法和状态方程法
6.引起水合物形成的主要条件:(1)天然气的温度等于或低于露点温度,有液态水存在(2)
在一定压力和气体组成下,天然气温度低于水合物形成的温度(3)压力增加,形成水合物
的温度相应增加
7.水合物形成的条件预测:相对密度法、平衡常数法、Baillie和Wichert法、分子热力学模
型法、实验法
8.天然气水合物的结构:体心立方晶体结构、金刚石型结构、结构H型水合物
在形成水合物的气体混合物体系中,可能出现平衡共存的相有气相,冰相,富水液相,富
烃液相和固态水合物相
9.吸附负荷曲线(吸附波):在吸附床层中,吸附质沿不同床层高度的浓度变化曲线,称为
吸附曲线
10.复合固体吸附剂的特点:
(1)既可以减少投资,又可以保证干气露点
(2)活性氧化铝可以作为分子筛的保护层
(3)活性氧化铝再生时能耗比分子筛低
(4)活性氧化铝的价格较低
三.判断
1.破点:床层出口气体中水的浓度刚刚开始发生变化的点,为破点
2.透过(穿透)曲线:从破点到整个床层达到饱和时,床层出口端流体中吸附质的浓度随时间的变化曲线
3.吸附剂平衡吸附量:当床层达到饱和时,吸附剂的吸附量
4.动态(有效)吸附(湿容)量:吸附过程达到破点时,吸附剂的吸附量
5.天然气绝对含水量:每标准立方米天然气的实际含水量
6.天然气饱和含水量:在一定温度压力下,天然气与液态水达到平衡时气体的绝对含水量
7.天然气的相对湿度:天然气中实际含水量与饱和含水量之比
8.天然气的水露点:在一定压力下,天然气中的水蒸汽开始冷凝的温度
9.甘醇在使用过程中将会受到的污染:氧气串气系统、降解、PH值降低、盐污染、液烃、淤渣、起泡
10.吸附法脱水是指气体采用固体吸附剂脱水,固也称为固体吸附剂脱水
11.物理吸附是由液体中吸附质分子与固体吸附剂表面之间的范德华力引起的
12.化学吸附是吸附质与固体吸附剂表面的未饱和化学键力作用的结果
13.分子筛类型为A型X型和Y型
14.固体吸附剂工艺参数的选择:吸附周期、湿气进干燥器温度、再生加热与冷却温度、加热与冷却时间分配
15.吸附剂床层由吸附饱和区、吸附传质区和未吸附区三部分组成
16.按照提供冷量的制冷系统不同,冷凝分离法可分为:冷剂制冷法,直接膨胀制冷法和联合制冷法三种
17.根据天然气在冷冻分离系统中的最低冷冻温度,又将冷凝分离法分为:浅冷凝分离与深冷凝分离
四.了解
1.制冷方法,
(1)阶式制冷系统:由几个单独而又相互联系的不同温度等级冷剂压缩制冷循环组成
(2)混合冷剂:是指由甲烷至戊烷等烃类混合物组成的冷剂
2.节流膨胀与透平膨胀的区别:
(1)节流过程用节流阀,结构简单,操作方便,等熵膨胀过程用膨胀机,结构复杂
(2)膨胀机中实际上为多变过程,因而所得到的温度效应及制冷量比等熵过程的理论值小
(3)节流阀可以气液两相内工作 ,即节流阀出口可以允许有很大的带液量,而膨胀机出口允许的带液量有一定的限度
3天然气回收工艺方法主要由原料气预处理、压缩、冷凝分离、凝液分馏、干气再压缩以及制冷等部分组成。
原料气预处理的目的是:脱除原料气中携带的油、游离水和泥沙等杂质、以及脱除原料气中的水蒸气和酸性组分等
原料气压缩的目的是:为了提高天然气的冷凝率
4.二氧化碳含量过高,会降低天然气的热值
5.从天然气中脱除酸性组分的工艺过程称为脱硫,脱碳,习惯上统称为天然气脱硫
6.天然气脱硫的方法:间歇法、化学吸收法、物理吸收法、联合吸收法(化学-物理吸收法)、
直接转化法、膜分离法
7.克劳斯法硫磺回收常用的工艺方法有:直通法、分流法、硫循环法、直接氧化法
8.克劳斯法硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、冷凝器
9.液硫脱气工艺有循环喷洒法和气提法两种
10.天然气液化一般包括天然气净化(也称预处理)过程和天然气液化过程两部分
11.LNG工厂按照LNG的使用情况主要分成两种类型:基本负荷型(基地型)和调峰型
12.天然气液化工艺过程原料气预处理:原料气中的CO HS COS 采用醇胺法或其它方法脱
除,水采用分子筛吸附法脱除,汞采用可再生的HgSIV吸附剂脱除,N采用闪蒸分离法脱除
13.天然气液化原理及工艺 :天然气液化的实质就是通过换热不断从天然气中取走热量最终
达到液化的目的。因此天然气液化的核心是制冷系统
14.LNG装置实质上是压缩机,换热器,膨胀机或节流阀等的组合体
LNG装置工艺流程采用的制冷循环可分为下述几种
1)节流制冷循环
2)膨胀剂制冷循环
3)阶式制冷循环
4)混合冷剂制冷循环
5)有冷剂预冷的混合冷剂制冷循
6)以低温制冷机为冷源的制冷循环
15.天然气液化工艺中的主要设备是压缩机组及换热器等
16.常用的压缩机有两种类型:离心式压缩机和轴流式压缩机
17.大中型LNG装置的压缩机采用的驱动机有两种:蒸汽轮机和燃气轮机
18.LNG装置中采用的换热器主要有两种、绕管式换热器和板翘式换热器
第五篇: 铝合金压铸件表面处理工艺及铝合金表面处理方法总结
发布时间:2011-7-20 9:41:27 来源:互联网文字【大 中 小】
一、铝材磷化
通过采用SEM, XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、氟化物、Mn2+,Ni2+,Zn2+,PO4;和Fe2+等对铝材磷化过程的影响。研究表明:硝酸胍具有水溶性好,用量低,快速成膜的特点,是铝材磷化的有效促进剂、氟化物可促进成膜,增加膜重,细化晶粒;Mn2+,Ni2+能明显细化晶粒,使磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着Zn2+浓度增加,膜重增加O4含量对磷化膜重影响较大,提高PO4。含量使磷化膜重增加。
二、铝的碱性电解抛光工艺
进行了碱性抛光溶液体系的研究,比较了缓蚀剂、粘度剂等对抛光效果的影响,成功获得了抛光效果很好的碱性溶液体系,并首次得到了能降低操作温度、延长溶液使用寿命、同时还能改善抛光效果的添加剂。实验结果表明:在NaOH溶液中加入适当添加剂能产生好的抛光效果。 探索性实验还发现:用葡萄糖的NaOH溶液在某些条件下进行直流恒压电解抛光后,铝材表面反射率可以达到90%,但由于实验还存在不稳定因素,有待进一步研究。探索了采用直流脉冲电解抛光法在碱性条件下抛光铝材的可行性,结果表明:采用脉冲电解抛光法可以达到直流恒压电解抛光的整平效果,但其整平速度较慢。
三、铝及铝合金环保型化学抛光
确定开发以磷酸一硫酸为基液的环保型化学抛光新技术,该技术要实现NOx的零排放且克服以往类似技术存在的质量缺陷。新技术的关键是在基液中添加一些具有特殊作用的化合物来替代硝酸。为此首先需要对铝的三酸化学抛光过程进行分析,尤其要重点研究硝酸的作用。硝酸在铝化学抛光中的主要作用是抑制点腐蚀,提高抛光亮度。结合在单纯磷酸一硫酸中的化学抛光试验,认为在磷酸一硫酸中添加的特殊物质应能够抑制点腐蚀、减缓全面腐蚀,同时必须具有较好的整平和光亮效果。
四、铝及其合金的电化学表面强化处理
铝及其合金在中性体系中阳极氧化沉积形成类陶瓷非晶态复合转 化膜的工艺、性能、形貌、成分和结构,初步探讨了膜层的成膜过程和机理。 工艺研究结果表明,在Na_2WO_4中性混合体系中,控制成膜促进剂浓度为2.5~3.0g/l, 络合成膜剂浓度为1.5~3.0g/l,Na_2WO_4浓度为0.5~0.8g/l,峰值电流密度为6~12A/dm~2, 弱搅拌,可以获得完整均匀、光泽性好的灰色系列无机非金属膜层。该膜层厚度为 5~10μm,显微硬度为300~540HV,耐蚀性优异。该中性体系对铝合金有较好的适应性, 防锈铝、锻铝等多种系列铝合金上都能较好地成膜。
五、YL112铝合金表面氧化处理工艺技术
Yl112铝合金广泛应用於汽车、摩托车的结构件。
金属表面在各种热处理、机械加工、运输及保管过程中,不可避免地会被氧化,产生一层厚薄不均的氧化层。同时,也容易受到各种油类污染和吸附一些其它的杂质。
油污及某些吸附物,较薄的氧化层可先后用溶剂清洗、化学处理和机械处理,或直接用化学处理。对于严重氧化的金属表面,氧化层较厚,就不能直接用溶剂清洗和化学处理,而最好先进行机械处理。
通常经过处理后的金属表面具有高度活性,更容易再度受到灰尘、湿气等的污染。为此,处理后的金属表面应尽可能快地进行胶接。
经不同处理后的金属保管期如下: (1)湿法喷砂处理的铝合金,72h; (2)铬酸-硫酸处理的铝合金,6h; (3)阳极化处理的铝合金,30天; (4)硫酸处理的不锈钢,20天; (5)喷砂处理的钢,4h; (6)湿法喷砂处理的黄铜,8h。
六、铝及铝合金表面处理方法 (方法1)
脱脂处理。用脱脂棉沾湿溶剂进行擦拭,除去油污后,再以清洁的棉布擦拭几次即可。常用溶剂为:三氯乙烯、醋酸乙酯、丙酮、丁酮和汽油等。 (方法2)
脱脂后于下述溶液中化学处理: 浓硫酸27.3重铬酸钾7.5水65.2 在60-65°C浸渍10-30min后取出用水冲洗,晾干或在80°C以下烘干;或者在下述溶液中洗后再晾干: 磷酸10正丁醇3水20 此方法适用于酚醛-尼龙胶等,效果良好 (方法3)
脱脂后于下述溶液中化学处理:氟化氢铵3-3.5氧化铬20-26磷酸钠2-2.5浓硫酸50-60硼酸0.4-0.6 水1000 在25-40°C浸渍4.5-6min,即进行水洗、干燥。本方法胶接强度较高,处理后4h内胶接,适用于环氧胶和环氧-丁晴胶胶接。 (方法4)
脱脂后于下述溶液中化学处理:
磷酸7.5氧化铬7.5酒精5.0甲醛(36-38%)80 在15-30°C浸渍10-15min,然后在60-80°C下水洗、干燥。 (方法5)
脱脂后于下述溶液中进行阳极化处理: 浓硫酸22g/l 在1-1.5A/dm2的直流强度下浸渍10-15min,再在饱和重铬酸钾溶液中,于95-100°C下浸渍5-20min,然后水洗,干燥。 (方法6)
脱脂后于下述溶液中化学处理:
重铬酸钾66硫酸(96%)666水1000,在70°C下浸渍10min,然后水洗,干燥。 (方法7)
脱脂后于下述溶液中化学处理: 硝酸(d=1.41)3氢氟酸(42%)1 在20°C下浸渍3s,即用冷水冲冼,再在65°C下用热水洗涤,蒸馏水冲洗,干燥。此法适宜于含铜较高的铸造铝合金。 (方法8)
喷砂或打磨后,在下述溶液中阳极化: 氧化铬100硫酸0.2氯化钠0.2 在40°C下于10min内将电压从0V升至10V,保持20min,再在5min内从10V升至50V,保持5min,然后水洗,700C下干燥。注意:游离氧化铬浓度不得超过30-35g/l。
(方法9)
脱脂后于下述溶液中化学处理: 硅酸钠10非离子去垢剂0.1 在65°C下浸渍5min,然后在65°C以下水洗,再用蒸馏水洗涤和干燥。适用于铝箔的胶接。 (方法10)
脱脂后在下述溶液中化学处理: 氟化钠1浓硝酸15水84 在室温下浸渍1min,水洗后再在下述溶液中处理: 浓硫酸30重铬酸钠7.5水62.5 在室温下浸渍1min,水洗,干燥。