范文网 论文资料 平行线的判定基础测试(集锦)

平行线的判定基础测试(集锦)

平行线的判定基础测试第一篇:平行线的判定基础测试平行线的判定和性质测试题一、填空题:1、如右图,直线a、b被直线l所截,a∥b,170,则2. l ab2、两条直线被第三条直线所截,总有()A、同位角相等B、内错角相等C、同旁内角。

平行线的判定基础测试

第一篇:平行线的判定基础测试

平行线的判定和性质测试题

一、填空题:

1、如右图,直线a、b被直线l所截,a∥b,170,

则2. l a

b

2、两条直线被第三条直线所截,总有()

A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对

3、如图1,下列说法正确的是()

A、若AB∥CD,则∠1=∠2B、若AD∥BC,则∠3=∠

4C、若∠1=∠2,则AB∥CDD、若∠1=∠2,则AD∥BC

(1)(2)(3)(4)

4、如图2,能使AB∥CD的条件是()

A、∠1=∠BB、∠3=∠AC、∠1+∠2+∠B=180°D、∠1=∠A

5、如图3,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于()

A、100°B、85°C、40°D、50°

6、如图4所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()

A、40°B、50°C、60°D、不能确定

7、如图5所示,直线L1∥L2,L3⊥L4,有三个命题:①∠1+∠3=90°,②∠2+∠3=90°,③∠2=∠4.下列说法中,正确的是()

A、只有①正确B、只有②正确C、①和③正确D、①②③都正确D

C B F

(6)(5)

8、如图6,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF= ()

A、110°B、115°C、120°D、130°

二、填空题:

1.默写两直线平行的条件:两直线平行的判定:

2.如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,________________________.(2)∠A =∠3,________________________. (3)∠ABC+∠C=180°,________________________.

3.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.

4.在同一平面内,同垂直于一条直线的两条直线________.

5.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,

理由是:____________________________________________. 6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.

三、解答题

1、 如图,AD∥BC,AC,说明AB∥DC.2、如图,已知DE∥BC,12,CDAB于点

C

3、如图所示,已知AB∥CD,A110,C140,求P的度数.4、已知如图,AB//CD,试解决下列问题: (1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;

(3)∠1+∠2+∠3+∠4=_____;

(4)试探究∠1+∠2+∠3+∠4+…+∠n=_____。

BB11E

21E2

F32

B

ED

12N

C

B

C

D

C

D

D

8、根据题意结合图形填空:

已知:如图,DE∥BC,∠ADE=∠EFC,将说明∠1=∠2成立的理由填写完整. 解:∵ DE∥BC()

∴∠ADE=______() ∵∠ADE=∠EFC() ∴______=

______

∴DB∥EF() B∴∠1=∠2()

9、如图,AB、CD被EF所截,MG平分∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明理由。

D

E

F

C

10、已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线 吗?若是,请说明理由。

11、如图所示,潜望镜的两个镜子是平行放置的,光线经过镜子反射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?

第二篇:初一数学平行线的判定测试题

一、选择题:(每小题3分,共24分)

1、下列说法正确的有〔〕

①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行

③过一点有且只有一条直线与已知直线平行;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个

2、在同一平面内,两条不重合直线的位置关系可能是〔〕

A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交

3.如图1所示,下列条件中,能判断AB∥CD的是()

A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD

(1)(2)(3)

4.如图2所示,如果∠D=∠EFC,那么()

A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF

5.如图3所示,能判断AB∥CE的条件是()

A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE

6.下列说法错误的是()

A.同位角不一定相等B.内错角都相等

C.同旁内角可能相等D.同旁内角互补,两直线平行

7.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()

A.平行B.垂直C.平行或垂直D.平行或垂直或相交

8、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是〔

A、0个B、1个C、2个D、3个〕

二、填空题:(每小题4分,共28分)

1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.

3、如图,光线AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的位置关系是,BE和DF的位置关系是.

4、如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:

5.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.6.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.

7.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.

(1)由∠CBE=∠A可以判断______∥______,根据是_________.

(2)由∠CBE=∠C可以判断______∥______,根据是_________.

三、训练平台:(每小题15分,共30分)

1、如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.2、如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•¬30°,试说明AB∥CD.

四、解答题:(共23分)

1、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为¬什么? (11分)

2、如图所示,请写出能够得到直线AB∥CD的所有直接条件. (12分)

五、根据下列要求画图.(15分)

1、如图(1)所示,过点A画MN∥BC;

2、如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;

3、如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB•的延长线交¬于点F.

(1)(2)(3)

第三篇:平行线的判定

平行线的判定练习精编

一.选择题(共30小题) 1.若∠1与∠2是同旁内角,∠1=30°,则(

)

A.∠2=150° B.∠2=30° C.∠2=150°或30° D.∠2的大小不能确定

2.下列说法中可能错误的是(

)

A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点 D.若两条直线相交成直角,则这两条直线互相垂直

3.下面各语句中,正确的是(

)

A.两条直线被第三条直线所截,同位角相等 B.垂直于同一条直线的两条直线平行 C.若a∥b,c∥d,则a∥d D.同旁内角互补,两直线平行

4.(2005•哈尔滨)下列命题中,正确的是(

)

A.任何数的平方都是正数 B.相等的角是对顶角 C.内错角相等 D.直角都相等

5.如图,下列说法中,正确的是(

)

A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD

6.如图,要得到a∥b,则需要条件(

)

A.∠2=∠4 C.∠1+∠2=180°

7.根据图,下列推理判断错误的是(

) B.∠1+∠3=180°

D.∠2=∠3

A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d C.因为∠1=∠3,所以c∥d D.因为∠2=∠3,所以a∥b 8.如图所示,下列条件中,能判断直线l1∥l2的是(

)

A.∠2=∠3 B.∠1=∠3 C.∠4+∠5=180° D.∠2=∠4

9.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是(

)

A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°

10.下列说法正确的是(

)

A.同位角相等 B.在同一平面内,如果a⊥b,b⊥c,则a⊥c 果a∥b,b∥c,则a∥c

11.下列四幅图中,∠1和∠2是同位角的是(

)

C.相等的角是对顶角 D.在同一平面内,如

A.(1)、(2) B.(3)、(4) C.(1)、(2)、(3) D.(2)、(3)、(4)

12.∠1与∠2是内错角,∠1=40°,则(

)

A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定

13.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是(

)

A.相交 B.平行 C.垂直 D.不确定

14.(2009•桂林)如图,在所标识的角中,同位角是(

)

A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3

15.如图,在下列结论给出的条件中,不能判定AB∥DF的是(

)

A.∠2+∠A=180° B.∠A=∠3 C.∠1=∠4 D.∠1=∠A

16.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是(

)

A.同位角 B.内错角 C.对顶角 D.同旁内角

17.下图中,∠1和∠2是同位角的是(

)

A. B. C. D.

18.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有(

)

A.1个 B.2个 C.3个 D.4个

19.在同一平面内,两条直线可能的位置关系是(

)

A.平行 B.相交 C.平行或相交 D.平行、相交或垂直

20.下列所示的四个图形中,∠1和∠2是同位角的是(

)

A.②③ B.①②③ C.①②④ D.①④

21.如图,下列条件中,能判定DE∥AC的是(

)

22.给出下列说法:

A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4

D.∠1=∠2

(1)两条直线被第三条直线所截,同位角相等;

(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;

(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中正确的有(

)

A.0个 B.1个 C.2个 D.3个

23.(2007•绍兴)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有(

) ①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.

A.①② B.②③ C.③④ D.①④

24.(2006•梧州)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是(

)

A.2个 B.3个 C.4个 D.5个

25.(2005•潍坊)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的(

)

A.∠1=∠2

26.如图,不能作为判断AB∥CD的条件是(

)

B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE

A.∠FEB=∠ECD B.∠AEC=∠ECD C.∠BEC+∠ECD=180° D.∠AEG=∠DCH 27.(2008•十堰)如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是(

)

A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠5 28.(2003•河北)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是(

)

A.第一次左拐30°,第二次右拐30° B.第一次右拐50°,第二次左拐130° C.第一次右拐50°,第二次右拐130° D.第一次向左拐50°,第二次向左拐120°

29.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(

)

A.a∥d B.b⊥d C.a⊥d D.b∥c

30.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是(

)

A.∠1=∠2 B.∠3=∠4

C.∠5=∠B

D.∠B+∠BDC=180°

答案与评分标准

一.选择题(共30小题) 1.若∠1与∠2是同旁内角,∠1=30°,则(

)

A.∠2=150° B.∠2=30° C.∠2=150°或30° D.∠2的大小不能确定 考点:同位角、内错角、同旁内角。

分析:两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系.

解答:解:同旁内角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,同旁内角才互补. 故选D.

点评:特别注意,同旁内角互补的条件是两直线平行.

2.下列说法中可能错误的是(

)

A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点 D.若两条直线相交成直角,则这两条直线互相垂直 考点:平行公理及推论;相交线;垂线。

分析:根据平行公理和相交线、垂线的定义利用排除法求解.

解答:解:A、应为过直线外一点有且只有一条直线与已知直线平行,错误; B、过一点有且只有一条直线与已知直线垂直,正确; C、两条直线相交,有且只有一个交点,正确;

D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,正确. 故选A.

点评:本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.

3.下面各语句中,正确的是(

)

A.两条直线被第三条直线所截,同位角相等 B.垂直于同一条直线的两条直线平行 C.若a∥b,c∥d,则a∥d D.同旁内角互补,两直线平行 考点:平行线的判定。

分析:根据相关的定义或定理判断.

解答:解:A、应强调两直线平行,被第三条直线所截,才能同位角相等; B、应强调在同一平面内,垂直于同一条直线的两条直线平行; C、应为a∥b,b∥c,c∥d,则a∥d; 只有D正确. 故选D.

点评:叙述命题时要注意所学定理叙述的完整性,注意定理成立的条件.

4.(2005•哈尔滨)下列命题中,正确的是(

)

A.任何数的平方都是正数 B.相等的角是对顶角 C.内错角相等 D.直角都相等 考点:同位角、内错角、同旁内角;对顶角、邻补角;垂线。

分析:根据平方、对顶角、内错角、直角的定义和性质,对选项一一分析,排除错误答案. 解答:解:A、因为0的平方是0,故错误;

B、对顶角一定相等,但相等的角不一定是对顶角,故错误; C、只有两直线平行,内错角才相等,故错误; D、直角都是90°的角,所以都相等,故正确. 故选D.

点评:解答此题的关键是对考点知识熟练掌握和运用.

5.如图,下列说法中,正确的是(

)

A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD 考点:平行线的判定。

分析:A、B、C、根据同旁内角互补,判定两直线平行;D、∠A与∠C不能构成三线八角,因而无法判定两直线平行.

解答:解:A、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,错误; B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,错误; C、正确; D、∠A与∠C不能构成三线八角,无法判定两直线平行,错误. 故选C.

点评:平行线的判定:

同位角相等,两直线平行. 内错角相等,两直线平行. 同旁内角互补,两直线平行.

6.如图,要得到a∥b,则需要条件(

)

A.∠2=∠4 B.∠1+∠3=180° C.∠1+∠2=180° D.∠2=∠3 考点:平行线的判定。

分析:在复杂的图形中具有相等关系的两角要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 解答:解:A、∵∠2=∠4, ∴c∥d(同位角相等,两直线平行); B、∵∠1+∠3=180°, c∥d(同旁内角互补,两直线平行); C、∵∠1+∠2=180°, ∴a∥b(同旁内角互补,两直线平行); D、∠2与∠3不能构成三线八角,无法判定两直线平行. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

7.根据图,下列推理判断错误的是(

)

A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d C.因为∠1=∠3,所以c∥d D.因为∠2=∠3,所以a∥b 考点:平行线的判定。

分析:根据平行线的判定定理进行解答. 解答:解:A、正确,因为∠1=∠2,由内错角相等,两直线平行,所以c∥d; B、正确,因为∠3=∠4,由同位角相等,两直线平行,所以c∥d; C、三不符合平行线的判定条件,所以无法确定两直线平行. D、正确,因为∠2=∠3,由同位角相等,两直线平行,所以a∥b. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

8.如图所示,下列条件中,能判断直线l1∥l2的是(

)

A.∠2=∠3 B.∠1=∠3 C.∠4+∠5=180° D.∠2=∠4 考点:平行线的判定。

分析:要证明两直线平行,则要找到同位角、内错角相等,同旁内角互补等. 解答:解:A、∠2和∠3不是直线l

1、l2被第三条直线所截形成的角,故不能判断直线l1∥l2. B、∵∠1=∠3,∴l1∥l2(同位角相等两直线平行). C、∠

4、∠5是直线l

1、l2被第三条直线所截形成的同位角,故∠4+∠5=180°不能判断直线l1∥l2. D、∠

2、∠4是直线l

1、l2被第三条直线所截形成的同旁内角,故∠2=∠4不能判断直线l1∥l2. 故选B.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.

9.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是(

)

A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180° 考点:平行线的判定。

分析:根据平行线的判定定理进行逐一分析解答即可.

解答:解:A、正确,符合内错角相等,两条直线平行的判定定理; B、正确,符合同位角相等,两条直线平行的判定定理; C、错误,若∠3=∠4,则AD∥BE;

D、正确,符合同旁内角互补,两条直线平行的判定定理; 故选C.

点评:本题考查的是平行线的判定定理,比较简单.

10.下列说法正确的是(

)

A.同位角相等 B.在同一平面内,如果a⊥b,b⊥c,则a⊥c C.相等的角是对顶角 D.在同一平面内,如果a∥b,b∥c,则a∥c 考点:平行公理及推论;对顶角、邻补角;平行线的判定。 分析:根据平行线的性质和判定以及对顶角的定义进行判断.

解答:解:A、只有在两直线平行这一前提下,同位角才相等,故错误; B、在同一平面内,如果a⊥b,b⊥c,则a∥c,所以B错误;

C、相等的角不一定是对顶角,因为对顶角还有位置限制,所以C错误; D、由平行公理的推论知,D正确. 故选D.

点评:本题考查了平行线的性质、判定,对顶角的性质,注意对顶角一定相等,但相等的角不一定是对顶角.

11.下列四幅图中,∠1和∠2是同位角的是(

)

A.(1)、(2) B.(3)、(4) C.(1)、(2)、(3) D.(2)、(3)、(4) 考点:同位角、内错角、同旁内角。

分析:互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角. 解答:解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角; 图(3)∠

1、∠2的两边都不在同一条直线上,不是同位角; 图(4)∠

1、∠2不在被截线同侧,不是同位角. 故选A.

点评:本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.

12.∠1与∠2是内错角,∠1=40°,则(

)

A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定 考点:同位角、内错角、同旁内角。

分析:两直线平行时内错角相等,不平行时无法确定内错角的大小关系.

解答:解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等. 故选D.

点评:特别注意,内错角相等的条件是两直线平行.

13.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是(

)

A.相交 B.平行 C.垂直 D.不确定 考点:平行公理及推论。

分析:根据如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 解答:解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.

点评:本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.

14.(2009•桂林)如图,在所标识的角中,同位角是(

)

A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3 考点:同位角、内错角、同旁内角。

分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 解答:解:根据同位角、邻补角、对顶角的定义进行判断, A、∠1和∠2是邻补角,错误; B、∠1和∠3是邻补角,错误; C、∠1和∠4是同位角,正确; D、∠2和∠3是对顶角,错误.故选C.

点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.

15.如图,在下列结论给出的条件中,不能判定AB∥DF的是(

)

A.∠2+∠A=180° B.∠A=∠3 C.∠1=∠4 D.∠1=∠A 考点:平行线的判定。

分析:利用平行线的判定定理,逐一判断. 解答:解:A、∵∠2+∠A=180,∴AB∥DF(同旁内角互补,两直线平行); B、∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行); C、∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行). 故选D.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

16.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是(

)

A.同位角 B.内错角 C.对顶角 D.同旁内角 考点:同位角、内错角、同旁内角。

分析:拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角. 解答:解:角在被截线的内部,又在截线的两侧,符合内错角的定义, 故选B.

点评:本题主要考查了内错角的定义.

17.下图中,∠1和∠2是同位角的是(

)

A. B. C. D.

考点:同位角、内错角、同旁内角。

分析:本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断. 解答:解:A、∠

1、∠2的两边都不在同一条直线上,不是同位角; B、∠

1、∠2的两边都不在同一条直线上,不是同位角; C、∠

1、∠2的两边都不在同一条直线上,不是同位角; D、∠

1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角. 故选D.

点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.

18.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有(

)

A.1个 B.2个 C.3个 D.4个 考点:平行线的判定。

分析:根据对顶角的性质和平行线的判定定理,逐一判断. 解答:解:①是正确的,对顶角相等; ②正确,在同一平面内,垂直于同一条直线的两直线平行; ③错误,角平分线分成的两个角相等但不是对顶角; ④错误,同位角只有在两直线平行的情况下才相等. 故①②正确,③④错误,所以错误的有两个, 故选B.

点评:平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.

19.在同一平面内,两条直线可能的位置关系是(

)

A.平行 B.相交 C.平行或相交 D.平行、相交或垂直 考点:平行线;相交线。

分析:在同一平面内,两条直线的位置关系是平行或相交.

解答:解:根据在同一平面内,两条直线的位置关系是平行或相交.可知A、B都不完整,故错误,而D选项中,垂直是相交的一种特殊情况,故选C.

点评:本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.

20.下列所示的四个图形中,∠1和∠2是同位角的是(

)

A.②③ B.①②③ C.①②④ D.①④ 考点:同位角、内错角、同旁内角。

分析:此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求. 解答:解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选C.

点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.

21.如图,下列条件中,能判定DE∥AC的是(

)

A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠2 考点:平行线的判定。

分析:可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断. 解答:解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行; ∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC; ∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

22.给出下列说法:

(1)两条直线被第三条直线所截,同位角相等;

(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;

(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中正确的有(

)

A.0个 B.1个 C.2个 D.3个

考点:同位角、内错角、同旁内角;对顶角、邻补角;点到直线的距离。

分析:正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断. 解答:解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误; (2)强调了在平面内,正确; (3)不符合对顶角的定义,错误;

(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度. 故选B.

点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.

23.(2007•绍兴)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有(

) ①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.

A.①② B.②③ C.③④ D.①④

考点:平行线的判定。 专题:操作型。

分析:解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,故过点P所折折痕与虚线垂直. 解答:解:由作图过程可知,∠1=∠2,为内错角相等;∠1=∠4,为同位角相等; 可知小敏画平行线的依据有:③同位角相等,两直线平行;④内错角相等,两直线平行.

故选C.

点评:理解折叠的过程是解决问题的关键.

24.(2006•梧州)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是(

)

A.2个 B.3个 C.4个 D.5个

考点:同位角、内错角、同旁内角;线段的性质:两点之间线段最短。

分析:此题考查的知识点多,用平行线的性质,对顶角性质,补角的定义等来一一验证,从而求解. 解答:解:①忽略了两条直线必须是平行线; ③不应忽略相等的两个角的两条边必须互为反向延长线,才是对顶角; ④举一反例即可证明是错的:80°+60°=170°,170°显然不是锐角,故①③④是错的. ②是公理故正确;⑤根据补角定义如果两个角的和是一个平角,那么这两个角叫互为补角, 其中一个角叫做另一个角的补角,同角的补角相等.比如:∠A+∠B=180°,∠A+∠C=180°,则∠C=∠B. 等角的补角相等.比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠C=∠B. ∴②⑤是正确的. 故选A.

点评:此题涉及知识较多,请同学们认真阅读,最好借助图形来解答.

25.(2005•潍坊)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的(

)

A.∠1=∠2 B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE 考点:平行线的判定。 分析:要使DF∥BC,可围绕截线找同位角、内错角和同旁内角,选项中∠1=∠DFE,根据已知条件可得∠1=∠2,所以∠DFE=∠2,满足关于DF,BC的内错角相等,则DF∥BC. 解答:解:∵EF∥AB, ∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠DFE, ∴∠2=∠DFE(等量代换), ∴DF∥BC(内错角相等,两直线平行). 所以只需满足下列条件中的∠1=∠DFE. 故选D.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.

26.如图,不能作为判断AB∥CD的条件是(

)

A.∠FEB=∠ECD B.∠AEC=∠ECD C.∠BEC+∠ECD=180° D.∠AEG=∠DCH 考点:平行线的判定。

分析:利用平行线的判定定理,逐一判断. 解答:解:A、正确,∵∠FEB=∠ECD, ∴AB∥CD(同位角相等,两直线平行). B、正确,∵∠AEC=∠ECD, ∴AB∥CD(内错角相等,两直线平行). C、正确,∵∠BEC+∠ECD=180°, ∴AB∥CD(同旁内角互补,两直线平行). 故选D.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

27.(2008•十堰)如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是(

)

A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠5 考点:平行线的判定。 专题:几何图形问题。

分析:结合图形分析两角的位置关系,根据平行线的判定方法判断. 解答:解:∵∠1=∠2, ∴BC∥AD(内错角相等,两直线平行). 故选C.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.

28.(2003•河北)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是(

)

A.第一次左拐30°,第二次右拐30° B.第一次右拐50°,第二次左拐130° C.第一次右拐50°,第二次右拐130° D.第一次向左拐50°,第二次向左拐120° 考点:平行线的判定。 专题:应用题。

分析:两次拐弯后,行驶方向与原来相同,说明两次拐弯后的方向是平行的.对题中的四个选项提供的条件,运用平行线的判定进行判断,能判定两直线平行者即为正确答案. 解答:解:如图所示(实线为行驶路线):

A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定. 故选A.

点评:本题考查平行线的判定,熟记定理是解决问题的关键.

29.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(

)

A.a∥d B.b⊥d C.a⊥d D.b∥c 考点:平行线的判定;垂线。

分析:根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d. 解答:解:∵a⊥b,b⊥c, ∴a∥c, ∵c⊥d, ∴a⊥d.故选C.

点评:此题主要考查了平行线及垂线的性质.

30.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是(

)

A.∠1=∠2 B.∠3=∠4 D.∠B+∠BDC=180° 考点:平行线的判定。

分析:根据平行线的判定方法直接判定. 解答:解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确; 选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确; 选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确; 而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误. 故选A.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

C.∠5=∠B

菁优网 版权所有

仅限于学习使用,不得用于任何商业用途

第四篇:平行线的判定

一、教学目标:

知识目标:了解推理、证明的格式.理解平行线判定公理的形成,第一个判定定理的证法.掌握平行线判定公理和第一个判定定理.会用判定公理及第一个判定定理进行简单的推理论证.

能力目标:通过模型演示,即“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——总结”的能力.通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力.通过判定定理的推导,培养学生的逻辑推理能力. 情感态度目标:通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想.

二、教学重点、难点

1、重点在观察实验的基础上进行公理的概括与定理的推导.

2、难点判定定理的形成过程中逻辑推理及书写格式.

第五篇:平行线的判定公理

平行线的判定公理(定理) (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”). (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”). (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”). 2.平行线的性质公理(定理) 如果两条平行线被第三条直线所截,那么 (1)同位角相等(简称“两直线平行,同位角相等”). (2)内错角相等(简称“两直线平行,内错角相等”). (3)同旁内角含有未知数的等式叫方程。 等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。 用字母表示为:若a=b,c为一个数或一个代数式。则:

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析: 1.本题中给出的已知量和未知量各是什么? 2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500, 所以 x=50 000. 答:原来有 50 000千克面粉. 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿. 依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下: (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步); (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义. 编辑本段二元一次方程(组) 人教版7年级数学下册会学到,冀教版7年级数学下册第九章会学到。 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。 二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种: 代入消元法 例:解方程组x+y=5① 6x+13y=89② 解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7 把y=59/7带入③,得x=5-59/7,即x=-24/7 ∴x=-24/7,y=59/7 这种解法就是代入消元法。 加减消元法 例:解方程组x+y=5① x-y=9② 解:①+②,得2x=14,即x=7 把x=7带入①,得7+y=5,解得y=-2 ∴x=7,y=-2 这种解法就是加减消元法。 二元一次方程组的解有三种情况: 1.有一组解 如方程组x+y=5① 6x+13y=89②的解为x=-24/7,y=59/7。 2.有无数组解 如方程组x+y=6① 2x+2y=12②,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3.无解 如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5,这与方程①相矛盾,所以此类方程组无解。 编辑本段三元一次方程 定义:与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程。 三元一次方程组的解法:与二元一次方程类似,利用消元法逐步消元。 典型题析: 某地区为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨按0.9元/吨收费;超过10吨而不超过20吨按1.6元/吨收费;超过20吨的部分按2.4元/吨收费.某月甲用户比乙用户多缴水费16元,乙用户比丙用户多缴水费7.5元.已知丙用户用水不到10吨,乙用户用水超过10吨但不到20吨.问:甲.乙.丙三用户该月各缴水费多少元(按整吨计算收费)? 解:设甲用水x吨,乙用水y吨,丙用水z吨 显然,甲用户用水超过了20吨 故甲缴费:0.9*10+1.6*10+2.4*(x-20)=2.4x-23 乙缴费:0.9*10+1.6*(y-10)=1.6y-7

丙缴费:0.9z

2.4x-23=1.6y-7+16 1.6y-7=0.9z+7.5 化简得 3x-2y=40----(1) 16y-9z=145-------(2) 由(1)得x=(2y+40)/3 所以设y=1+3k,3 编辑本段一元二次方程 人教版9年级数学上册会学到,冀教版9年级数学上册第二十九章会学到。 定义:含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。 由一次方程到二次方程是个质的转变,通常情况下,二次方程无论是在概念上还是解法上都比一次方程要复杂得多。 一般形式:ax^2+bx+c=0 (a≠0) 一般解法有四种: ⒈公式法(直接开平方法) ⒉配方法 ⒊十字相乘法 ⒋因式分解法 (由于精力有限,不举例说明如何解,望有人能帮忙)

1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:将常数项移到方程右边 3x2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。 编辑本段附注 一般地,n元一次方程就是含有n个未知数,且含未知数项次数是1的方程,一次项系数规定不等于0; n元一次方程组就是几个n元一次方程组成的方程组(一元一次方程除外); 一元a次方程就是含有一个未知数,且含未知数项最高次数是a的方程(一元一次方程除外); 一元a次方程组就是几个一元a次方程组成的方程组(一元一次方程除外); n元a次方程就是含有n个未知数,且含未知数项最高次数是a的方程(一元一次方程除外); n元a次方程组就是几个n元a次方程组成的方程组(一元一次方程除外); 方程(组)中,未知数个数大于方程个数的方程(组)叫做不定方程(组),此类方程(组)一般有无数个解。 互补(简称“两直线平行,同旁内角互补”)

上一篇
下一篇
返回顶部