范文网 论文资料 基于plc的自动洗车机(大全)

基于plc的自动洗车机(大全)

基于plc的自动洗车机第一篇:基于plc的自动洗车机基于PLC的自动洗车机课程设计电气控制与PLC课程设计院 系:工学院电气与电子工程系专 业:电气工程及其自动化班 级:电气工程姓 名:学 号:指导教师:题目:自动洗车机XXXX班 XXXX。

基于plc的自动洗车机

第一篇:基于plc的自动洗车机

基于PLC的自动洗车机课程设计

电气控制与PLC课程设计

院 系:工学院电气与电子工程系专 业:电气工程及其自动化班 级:电气工程姓 名:学 号:指导教师:

题目:自动洗车机

XXXX班 XXXXXX

XXXXXXXXXXXX

XXXXXX

二〇一五年六月

PLC课程设计任务书

一、基本情况

学时:1周

学分:1学分

适应班级:

二、进度安排

本设计共安排1周,合计30学时,具体分配如下: 实习动员及准备工作:

1学时 总体方案设计:4学时 硬件设计:10学时 软件设计:10学时 撰写设计报告:4 学时 总结:

1学时

教师辅导:

随时

三、基本要求

1、课程设计的基本要求

电气控制与PLC课程设计的主要内容包括:理论设计与撰写设计报告等。其中理论设计又包括总体方案选择,硬件系统设计、软件系统设计;硬件设计包括单元电路,选择元器件及计算参数等;软件设计包括模块化层次结构图,程序流程图,应用程序。程序设计是课程设计的关键环节,通过进一步完善程序设计,使之达到课题所要求的指标。课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。

2、课程设计的教学要求

电气控制与PLC课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到6节以上,或者迟到、早退累计达到6次以上的学生,该课程考核按不及格处理。在实训期间需要外出查找资料,必须在指定的时间内方可外出。

课程设计的任务相对分散,每3-4名学生组成一个小组,完成一个课题的设计。小组成员既有分工、又要协作,同一小组的成员之间可以相互探讨、协商,可以互相借鉴

或参考别人的设计方法和经验。但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰写设计报告,设计报告雷同率超过50%的课程设计考核按不及格处理。

四、设计题目及控制要求

题目:自动洗车机 要求:

1.按下启动按钮,洗车机开始往右移,喷水设备开始喷水,刷子开始洗刷。 2.洗车机右移到达右极限开关后,开始左移,喷水及刷子继续工作。

3.洗车机左移到达极限位置后,开始右移,喷水机及刷子停止工作,清洗机设备开始动作喷洒清洗剂。

4.洗车机右移到达极限位置,开始左移,继续喷洒清洁剂。

5.洗车机左移到达极限位置,开始右移,清洁剂停止喷洒,当洗车机往右移3s后停止,刷子开始洗刷。

6.刷子洗刷5s停止,洗车机继续右移3s,刷子又开始洗刷5s停止,洗车机继续右移,到达右极限开关后停止,然后往左移。

7.重复上面第6步,左移碰左极限开关停止。

8.洗车机往右移,风机设备动作将车吹干,碰到右极限开关时,洗车机往左移,直到碰到左极限开关,重复2次动作。洗车整个过程完成。启动灯熄灭。

9.原点复位设计

若洗车机正在动作时发生停电或故障,则故障排除后必须使用原点复位,将洗车机复位到原点,才能做洗车全流程的动作,其动作就是按下[复位按钮],则洗车机的右移、喷水、洗刷、风扇及清洁剂喷洒均需停止,洗车机往左移,当洗车机到达左极限开关时,原点复位灯亮起,表示洗车机完成复位动作。

五、设计报告

设计完成后,必须撰写课程设计报告。设计报告必须独立完成,格式符合要求,文字(不含图形、程序)不少于2000字,图形绘制规范。设计报告的格式如下:

1、封面

2、摘要

3、目录

4、正文

(1) 所作题目的意义、本人所做的工作及系统的主要功能; (2) 方案选择及论证;

(3) 硬件电路设计及描述(包括硬件的选型及电路图、输入输出接线图等的设计); (4) 软件设计流程及描述(流程图及文字说明; (5) 源程序代码及调试;

5、心得体会

6、参考文献

六、考核方法

电气控制与PLC技术课程设计的考核方式为考查,考核结果为优秀、良好、中等、及格和不及格五等,分数在90-100之间为优秀,80-89分之间为良好,70-79分之间为中等,60-69分之间为及格,60分以下为不及格。

考核分三个方面进行:平时表现20%;设计过程25%;设计报告 40%;设计答辩15%。

有下列情形之一者,课程设计考核按不及格处理:

1、设计期间累计迟到、早退达8次;

2、设计期间累计旷课达6节;

3、设计报告雷同率超过50%或无设计报告;

4、不能完成设计任务,达不到设计要求。

摘 要

本文PLC的课程设计采用西门子S7-300PLC来实现自动洗车机的自动清洗任务。并利用Microsoft Visio 绘图工具,进行主电路图、I/O接线图和流程图的绘制,最后利用SIMATIC Manager编程软件完成梯形图的程序设计。在老师的指导下,对PLC的编程程序进行仿真和调试。

本次设计中,自动洗车控制系统采用了四个输入信号(I0.0-I0.3),八个输出信号(Q0.0-Q0.7)。其中喷水、刷子动作和喷洒洗洁剂等电动机的运行由PLC的程序控制执行。自动洗车机启动后能按顺序完成要求动作,结束后自行停止,若断电停止在得电后不会自行启动,用PLC实现了洗车的自动化。PLC的程序设计和编程文中选择西门子S7-300型PLC进行操作,该型号西门子为中小型,有着模块化结构、易于实现分布式的配置以及性价比高等优点,有助于本文设计实现。

关键词:自动洗车机

西门子S7—300 PLC设计

目录

第1章绪论 ................................................................................................................................ 1

1.1 课题简述 .................................................................................................................... 1 1.2 课题背景和意义 ........................................................................................................ 1

1.2.1 背景 ................................................................................................................. 1 1.2.2 课题研究的必要性 ......................................................................................... 1 1.3 课题要求 .................................................................................................................... 1 第2章硬件电路设计 ................................................................................................................ 3

2.1 热继电器的选择 ........................................................................................................ 3 2.2 接触器的选择 ............................................................................................................ 3 2.3 总电路图 .................................................................................................................... 3 2.4 PLC的选择 ................................................................................................................. 4 2.5 PLC输入、输出口分配(I/O分配) ...................................................................... 5 2.6 PLC I/O接线图 ......................................................................................................... 6 第3章软件设计 ........................................................................................................................ 8

3.1 流程图 ........................................................................................................................ 8 3.2 PLC梯形图 ............................................................................................................... 11 3.3 仿真调试 .................................................................................................................. 15 心得体会 .................................................................................................................................. 19 参考文献 .................................................................................................................................. 20

第1章

绪论

1.1 课题简述

如今,PLC技术已非常成熟,不仅控制功能增强,功耗和体积减小,成本下降,可靠性提高,编程和故障检测更为灵活方便,而且随着远程I/O和通信网络、数据处理以及图象显示的发展,使PLC向用于连续生产过程控制的方向发展,成为实现工业生产自动化的一大支柱[2]。

而我们本次设计的自动洗车机,也是应运而生,随着汽车种类的增多和汽车均价的下降,有车族人数不断攀升,而随之兴起的汽车周边产业中,洗车行业则算是龙头。我们的生活中见到的大都是人力洗车,所以我们需要研究和设计自动洗车系统,来优化洗车行业、提升洗车效率。

1.2 课题背景和意义 1.2.1 背景

经过多年的发展,为满足工业自动化各种控制系统的需要,近年来,PLC厂家先后开发了不少新器件和模块,如智能I/O模块、温度控制模块和专门用于检测PLC外部故障的专用智能模块等,这些模块的开发和应用不仅增强了功能,扩展了PLC的应用范围,还提高了系统的可靠性。

SIMATIC S7-300 PLC是中小型化的PLC,它适用于各行各业,各种场合中的自动检测、监测及控制等。S7-300 PLC的强大功能使其无论单机运行,或连成网络都能实现复杂的控制功能。本次设计是将PLC用于自动洗车机的运行和实现,对学习和实用是很好的结合[3]。

1.2.2 课题研究的必要性

(1)可以促进我国PLC产业与当下热门行业的结合 (2)研究自动洗车机可以推动洗车行业的发展和自动化; (3)使有车族对汽车的使用和保养更加方便快捷 (4)解放劳动力,让洗车行业更加高效 1.3 课题要求

(一)本次课题的设计要求为:

1

1.进行总体设计规划,合理分配I/O点,并绘出电气控制线路的原理草图; 2.绘制电气原理图,计算并选择电器元件; 3.编写PLC软件清单并进行模拟调试; 4.编写课程设计说明书。

(二)本设计的主要研究范围及要求达到的技术参数有: 1.是自动洗车机可以按照规定的程序运行; 2.满足PLC对所有装置的控制;

3.对自动洗车机实现的设计和个人程序调试。

本课题应解决的主要问题是如何使PLC实现自动洗车机洗车的功能和多种要求,在实际当中对PLC运用于洗车技术并不多见,以致人们难以根据它的具体情况正确选用参数进行系统控制,也就难以满足如何实现并且达到高效可靠的要求,本设计就是基于以上问题进行的一些探讨。

2

第2章

硬件电路设计

2.1 热继电器的选择

热继电器的工作原理是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过载保护。继电器作为电动机的过载保护元件,以其体积小,结构简单、成本低等优点在生产中得到了广泛应用[4]。

我们选用JR16B-60/3D型热继电器。其中“J”表示继电器,“R”为热的谐音,“16”表示设计序号,“60”表示额定电流,“3D”表示三相保护。相关元件主要技术参数如下:

(1)额定电流为20(A);

(2)热元件额定电流为32/45(A)。 2.2 接触器的选择

CJX2系列交流接触器主要用于交流50Hz或60Hz、额定绝缘电压690V,在AC-3使用类别下,额定工作电压380V、额定工作电流至620A的电力系统中,供远距离接通和分断电路及频繁地起动和控制交流电动机。并可与适当的热过载继电器或电子式保护装置组合成电磁起动器,以保护可能发生过载的电路。

选用CJl0Z-40/3型接触器,其中“C”表示接触器,“J”表示交流,10为设计编号,“40”为额定电流,“3”为主触点数目[5]。

2.3 总电路图

由题目可知,我们需要设置的装置有:洗车机、清洗机、刷子、风机和喷水机。分别设置交流接触器来开断和控制电路,设置熔断器和隔离开关保护电路,根据题意和选择好的器件,我们最终设计出的总电路图如图2.1所示。

3

FuL1L2L3KM1KM2KM3KM4KM5KM6FR1FR2FR3FR4FR5M13~M23~M33~M43~M53~洗车机喷水机清洗机刷子风机

图 2.1 自动洗车机电路图

2.4PLC的选择

生活中常见的洗车一般都是人力清洗,用时较长,而且由于工作时间较长会导致疲劳,工作精度下降。基于此,我们考虑利用PLC的知识,设计一个可以自动清洗车辆的自动洗车机,在工作效率、工作精度和工作时间上为洗车这一行业提供便利及创新。

随着PLC应用领域日益扩大,PLC技术及其产品结构都在不断改进,功能日益强大,性价比越来越高。在产品规模方面,向两极发展。一方面,大力发展速度更快、性价比更高的小型和超小型PLC。以适应单机及小型自动控制的需要。另一方面,向高速度、大容量、技术完善的大型PLC方向发展。随着复杂系统控制的要求越来越高和微处理器与计算机技术的不断发展,人们对PLC的信息处理速度要求也越来越高,要求用户存储器容量也越来越大。而其中,西门子PLC的优势也很明显,第一,西门子PLC抗干扰能力比较强,也比较耐用,维护率,损坏率比较低;第二,西门子PLC的通信效果特别好;第三,西门子PLC的软件SIMATIC Manager比较好用;第四,技术支持服务比较好;第五,网上资料比较多。所以我们选用了课程所学的西门子PLC,型号为S7-300。西门子的S7系列有快速的CPU处理速度,大程序容量,以及编程及监控功能强大,维修简单,所以性价比比较高[6]。

4

西门子PLC的一般结构如图2.2。

电源主机CPU输入 模块EPROM扫描程序 I/O管理输出模块RAM用户储存器编程器图2.2 PLC一般结构图

(1)中央处理单元(CPU)与通用计算机中的CPU一样,PLC中的CPU也是整个系统的核心部件,主要有运算器、控制器、寄存器及实现它们之间联系的地址总线、数据总线和控制总线构成,此外还有外围芯片、总线接口及有关电路。

(2)存储器10存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器。PLC常用的存储器类型有RAM、EPROM、EEPROM等。

(3)I/O模块

输入模块和输出模块通常称为I/O模块或I/O单元。PLC的对外功能主要是通过各种I/O接口模块与外界联系而实现的。

(4)电源模块输入、输出接口电路是PLC与现场I/O设备相连接的部件。它的作用是将输入信号转换为PLC能够接收和处理的信号,将CPU送来的弱电信号转换为外部设备所需要的强电信号。

2.5 PLC输入、输出口分配(I/O分配)

根据图2.1总电路图,我们设置PLC的I/O分配,其中I0.0-I0.3共4个输入端点,Q0.0-Q0.7共8个输出端点,如表2.1所示。

5

表2.1 I/O分配表

输入点地址

I0.0 I0.1 I0.2 I0.3

功能 SB1启动开关 复位按钮 左侧极限开关 右侧极限开关

输出点地址

Q0.0 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7

功能 洗车机左移 洗车机右移 喷水机喷水 刷子动作 清洁剂喷洒 风机动作 启动灯 复位灯

2.6 PLC I/O接线图

根据I/O分配和电路图,我们设计出I/O接线图,如图2.3所示。其中SB

1、SB2分别为启动和复位两个手动按钮,Q0.2-Q0.5为喷水、刷子等电动机,Q0.6和Q0.7为启动灯、复位灯。

6

N(-)1M1MSB1SB2 I0.0 I0.1I0.2Q0.5启动灯KM3KM1KM2Q0.0Q0.1KM4喷水机Q0.2刷子MM清洗机Q0.3Q0.4风机MMI0.3Q0.6复位灯Q0.72LC1Q1.0C2Q1.1C3Q1.2C4Q1.3MDC24VL+图2.3 I/O接线图

7

第3章

软件设计

3.1 流程图

自动洗车机执行流程为:

(1)按下启动按钮,洗车机开始往右移,喷水设备开始喷水,刷子开始洗刷。 (2)洗车机右移到达右极限开关后,开始左移,喷水及刷子继续工作。 (3)洗车机左移到达极限位置后,开始右移,喷水机及刷子停止工作,清洗机设备开始动作喷洒清洗剂。

(4)洗车机右移到达极限位置,开始左移,继续喷洒清洁剂。

(5)洗车机左移到达极限位置,开始右移,清洁剂停止喷洒,当洗车机往右移3s后停止,刷子开始洗刷。

(6)刷子洗刷5s停止,洗车机继续右移3s,刷子又开始洗刷5s停止,洗车机继续右移,到达右极限开关后停止,然后往左移。

(7)重复上面第6步,左移碰左极限开关停止。

(8)洗车机往右移,风机设备动作将车吹干,碰到右极限开关时,洗车机往左移,直到碰到左极限开关,重复2次动作。洗车整个过程完成。启动灯熄灭。

(9)原点复位设计:

若洗车机正在动作时发生停电或故障,则故障排除后必须使用原点复位,将洗车机复位到原点,才能做洗车全流程的动作,其动作就是按下[复位按钮],则洗车机的右移、喷水、洗刷、风扇及清洁剂喷洒均需停止,洗车机往左移,当洗车机到达左极限开关时,原点复位灯亮起,表示洗车机完成复位动作。

设计流程图如图3.1。

8

启动是否存在故障?NY停止启动指示灯亮右极限?N复位Y洗车右移、喷水、刷子洗刷右极限?YN洗车左移、喷水、刷子洗刷左极限?YN洗车右移、喷洒清洁剂右极限?N

9

洗车左移、喷洒清洁剂N左极限?Y洗车右移? 3s ?YN洗车停止右移、刷子洗刷N5s?YN右极限?Y洗车左移N3s?Y洗车停止左移、刷子洗刷5s?YN左极限?N

10

Y洗车右移、风机吹风N右极限?Y洗车左移、风机吹风左极限?YN吹风3次?NY洗车结束、指示灯灭

图3.1 流程图

3.2 PLC梯形图

根据流程图(图3.1),我们在SIMATIC Manager编程软件中,进行梯形图的编程,具体程序如图3.2所示。

11

12

13

14

图3.2 梯形图

3.3 仿真调试

由编程完成的梯形图进行运行操作,我们可以得到程序仿真图,模拟自动洗车机的运行过程。

点击I0.0启动按钮,启动后实现Q0.1右移,Q0.2喷水,Q0.3刷子动作,Q0.6启动灯亮(运行过程中,启动灯Q0.6一直亮)。

15

右移直至触碰到I0.3右极限开关,此时运行Q0.0左移、Q0.2喷水、Q0.3刷子动作。

左移到触碰左极限开关I0.2后,开始Q0.1右移、Q0.4清洁剂喷洒。

右移直至触碰右极限开关I0.3,开始Q0.0左移、此时Q0.4清洁剂继续喷洒。

左移直至触碰左极限开关I0.2,停止喷洒清洁剂,Q0.3刷子开始动作。

16

Q0.1右移3s,Q0.3刷子动作5s停止再次右移,交替进行,直至再次右移至极限。

右移触碰右极限开关I0.3,此时Q0.3刷子继续动作。

Q0.0左移3s、Q0.3刷子动作5s停止再次左移,交替进行,直至左移至左极限。

左移触碰左极限开关I0.2,此时刷子停止动作,实现Q0.1右移、Q0.5风机动作。

17

右移触碰右极限开关I0.3,开始Q0.0左移,此时Q0.5风机继续动作。

左右移动往返重复2次,Q0.5风机持续动作,Q0.6启动灯一直亮。

动作2次后,直至再次触碰到I0.2左极限开关,完成整个洗车过程,停止时Q0.6启动灯灭,无电动机动作。

18

心得体会

经过小组4人的研究与讨论,最终我们完成了基于西门子S7-300PLC的自动洗车机简单设计。在本次设计中,我们先在书籍和网络上调查了洗车机的背景和发展概况,对自动洗车机有了初步的了解,之后我们进行了硬件的电路图绘制,对各个电机进行了保护。再根据绘制的总电路图,选择主要的硬件器件,主要包括热继电器和接触器。之后是设计重点,相关于PLC的选择和设计,我们选用了常见的西门子S7-300型号PLC,相对于三菱等牌子更加智能和优化,基于此PLC选择,我们对洗车机的要素进行了I/O分配,然后绘制出I/O接线图,完成了硬件设计。软件设计是重点也是难点,我们先根据题目要求写出工作流程图,然后根据流程图编程梯形图,在编程的过程中,我们在左移、右移、风干和复位编程上面没有遇到阻碍,但是在喷水、刷子工作和喷洒清洁剂上面遇到了问题,导致第一次没能成功运行,最后经过咨询老师和同学,我们又设计了计时器,然后重新编程了喷水、刷子工作和喷洒清洁剂,才得以成功运行,得到了最后的仿真模拟图,完成了本文的设计。

在本次设计中,我不仅仅是巩固实践了PLC的学习内容,更是充分了解到了自己在PLC方面的不足,我在I/O接线图和梯形图编程上还有一些漏洞,比如不会设置时间和对程序重复设置的错误,在老师的耐心指导下,我改正并且牢牢记住了。感谢老师和同学的帮助,也感谢学校提供给我一个实践编程的机会,相信在不久的将来,我会在PLC上更大的进步。

19

参考文献

[1] 柳春生.电器控制与PLC[M]. 北京:机械工业出版社,2010. [2] 程子华.PLC原理与实例分析[M]. 北京:国防工业出版社,2006. [3] 高钦和.可编程控制器应用技术[M]. 北京:高等教育出版社,2004. [4] 廖常初.PLC编程及应用[M]. 北京:机械工业出版社,2005. [5] 易传禄.可编程控制器应用指南[M]. 上海:科普出版社,2002. [6] 廖常初.S7-300/400 PLC应用技术[M]. 北京:机械工业出版社,2012. [7] 程宪平.现代电气控制及PLC应用技术[M]. 武汉:华中科技大学出版社,2003.

20

第二篇:基于 PLC 制药厂水处理的自动控制系统简述

摘 要:近些年来随着人们对医药安全的不断担心,制药厂的安全生产和规范生产逐渐成为人们关注的焦点,因此高效稳定药厂供水系统是生产制备药品的一个关键所在。因此,如何设计出一套完整高效而有具有现代化特征的药厂水处理系统便显得十分关键了。基于PLC制药厂水处理的自动控制系统切实考虑了制药厂的用水需求。

关键词:水处理 PLC 预处理 电去离子

纯化水在医药产业中有着相当广泛应用。在药品生产中,无论是窗口洗涤,还是原料、制剂的生产都是离不开水的。随着技术的发展现在现在生产基本上都是自动化生产,于是PLC的运用就越来越广泛,在水厂这样工作量繁重的地方已经充分的实现生产自动化,可是虽然自动化已经很高了。但是依旧还是有问题,主要是在设备安全方面。全自动化就需要设备能安全的运行,如果不能安全的运行就会产生很严重的事故。容易引起这些事故发生的一些比较重要的原因还有我国生产这些机械的行业不够发达,和先进国家有着一些差距,这些差距体现在制造设备的材料,还有就是在对设备进行加工有比较鲜明的差异,就造成了在生产安全中的差距,国内自主生产的设备在实际运行的过程中比较常见的问题就是运行不稳定,总容易出现破损,成为困扰生产的主要难题之一。

PLC这种系统的优点就在于容易掌握、价格便宜,当时的控制要求可以得到满足,因而得到了广泛的应用,这也就是在一段时间内,继电接触器控制系统得以主导这个行业。不过,随着电气产业的不断发展以及大型工厂生产线的相继出现,继电器的体积笨拙、稳定性低以及功能不完善等缺点日益明显。单一的功能,复杂的控制功能难以实现,尤其是它的通用性和可移植性差,这些缺点难以适应现代企业的生产需要,因而就需要一种新的装置来替代它。它替代继电器,从而实现了逻辑控制。随着当今科技的进步,它不仅仅是逻辑控制了。

一、PLC概述

(一)PLC特点

选择PLC作为控制芯片主要是应为完善的功能具有较高的实用性;拥有较强的抗干扰能力适合在工厂复杂的环境当中进行处理做到安全可靠;丰富的接口可以对多种设备进行控制,做到真正的中心控制集中处理;在此基础上简单地开发工作非常适合工业控制的要求。软件编程设计时根据外部传感器接收的各种数据信号通过SIMATIC Manager STEP 7编程软件对控制器程序的编写,完成对水处理的流程的控制设计。编写通信程序使用的是西门子公司的WINCC软件进行编写,通过编写的软件界面实现对处理过程的显示。通过监控系统对水处理过程当中各个控制节点的参数进行实时监控,通过动态参数的分析掌握处理过程的变化趋势,达到及时发现及时处理的目的,能够在内部执行运算,还能够进行顺序控制等指令,它还能通过输入接口达到对各种设备的控制,也可以通过输出。

具有以下几个特点:

1.可靠性高,抗干扰能力强

在实际生产中往往对设备的控制要求非常的严格,还需要具有抗干扰能力,有的工作环境比较的恶劣他也能在这样的地方工作,发生事故的次数比较少。这就是PLC的一个比较明显的特点。

2.编程简单,使用方便

PLC的另一个明显的特点就是编程比较简单,基本上PLC都是用梯形图进行编程,这样既清晰大方还容易被大家所接受,与常用的汇编语言相比,更受人们的欢迎。

3.控制程序可变

PLC的程序具有普遍的适应性,不会随着设备的变化而发生明显的变化。

4.功能完善

现代PLC拥有越来越大的功能,可以不随着设备地点等变化而做过多的变化,同时向着人性化发展。

5.扩充方便,组合灵活

PLC的扩充单元也花样很多,能够满足不同要求的需要。为了满足实际中的控制需要,除了一些比较小的PLC,剩下的很多PLC都是利用模块化的结构。PLC组件的模块化设计,包括CPU,电源,然后在他们之间使用框架和电缆连接,然后组装模块可以选择。

6.丰富的I/O接口模块

为了能够和各种工业设备的相互连接,PLC不仅拥有最基本的部分(如CPU,存储器等)外,还有非常丰富的I/O接口模块。因为有着不一样的现场信号,所以就要设计出和他相匹配的I/O模块,通过这些模块跟设备连接起来。

(二)PLC分类

1.PLC的分类

按照I/O点的数量分:小型机、中型机和大型机三种;

按照结构形式分:整体式结构和模块式结构。模块式结构式由各种标准的模块单元组合而成,这些标准模块包含有电源模块、输入模块、输出模块和通信模块等各种特殊功能模块。

2.PLC的特点

(1)抗干扰能力强,可靠性高;(2)控制系统结构简单,通用性强;(3)编程方便,使用简易;(4)功能完善;(5)设计、施工和调试的周期短;(6)体积小,维护操作方便。

(三)PLC选型

PLC可以根据CPU带的I/O点数来分配,根据点数的不同可以分出几种不同的PLC。分别可以叫做小型,中型还有大型PLC。还有可以插卡式的PLC以及可以兼容的PLC,一套比较完整的的PLC有CPU模块、电源模块还有一些输入输出模块。而且这些模块都是插在一块背板上。

根据实际需要PLC我使用的是西门子S7-300系列,他的内部中央处理器为CPU315-2DP。CPU315-2DP他内部里面含有48KB的RAM,存储器的大小为80KB,如果存储空间不够的话还能够用存储卡,最多能够扩展到512KB。而且CPU315-2DP还是带有现场总线接口的CPU模块,能够扩展四个机架。

(四)PLC的应用

PLC这种系统的优点就在于容易掌握、价格便宜,当时的控制要求可以得到满足,因而得到了广泛的应用,这也就是在一段时间内,继电接触器控制系统得以主导这个行业。但是,随着社会生产力的进步和提高,继电接触器控制系统的缺陷渐渐显现出来:大体积的设备、不高的可靠性、单一的功能,复杂的控制功能难以实现,尤其是它的通用性和可移植性差,这些缺点难以适应现代企业的生产需要,因而就需要一种新的装置来替代它。PLC的应用面非常广泛,在工厂自动化和计算机集成控制系统内占有举足轻重的地位。

二、PLC的组成

不同厂家的PLC的具体结构是不同的,但是其基本的组成部分都相似,构成原理也基本相同,需要根据具体的应用去选择PLC设备的型号,需要扩展PLC子站及远程I/O模块,所以选择西门子公司的S7-200作为主机。200在对信号的处理方面更加精确,功能更加强大,组态方便,控制稳定,而且PLC200可以根据系统的具体要求随时增加各种扩展模块,维修时更换模块也很方便。从组成形式上一般分为处理器、电源、输入输出设备等。PLC的组成如图 2-1所示。

第三篇:基于PLC的十字路口交通灯课程设计

湘潭大学信息工程学院

课程名称:十字路口人行道交通灯设计

业:自动化

号:2011551810

级:11自动化(3)班

学生姓名:余帆

完成日期:2015年1月11日

PLC是一种新型的通用的自动控制装置。PLC它将传统的继电器控制技术、计算机技术和通讯技术融为一体,是专门为工业控制而设计的,具有功能强、运用灵活、可靠性高、稳定性好、抗干扰能力强、编程简单,使用方便以及体积小、重量轻、功耗低等一系列有点。十字路口的红绿灯指挥着行人和车辆的安全运行,实现红绿灯的自动指挥能使交通管理工作得到改善,也是交通管理工作自动化的重要标志之一。解决好公路交通灯控制问题是保障交通有序、安全、快捷运行的重要环节。

本设计是用PLC来实现对十字路口交通信号灯的控制,其控制方法是采用西门子的S7-200系列CPU224型号PLC对东西南北的红、黄、绿灯实现有规律的循环闪亮,以达到对交通信号灯的控制。控制程序为梯形图(LAD)。

关键词:PLC控制、梯形图、交通灯

0

(一) PLC概述 ............................. 错误!未定义书签。

1.1 PLC的硬件结构 ........................................ 3 1.2 PLC的工作原理 ......................................... 4 1.3 S7-200的概述 ......................................... 5

(二) 交通信号灯 ............................................ 7

(三) 方案设计 .............................................. 8

3.1控制要求 ............................................... 8 3.2系统设计方案分析 ....................................... 8 3.3 交通灯状态图 .......................................... 9 3.4 主程序流程图: ....................................... 10

(四) 硬件设计 ............................................ 10 4.1 硬件选择 ............................................. 10 4.2 PLC的I/O分配表 ..................................... 10

4.3 PLC的硬件接线图: .................................. 11

(五) 软件设计 ............................................ 12 5.1 十字路口交通信号灯梯形图.............................. 12

(六) 仿真实验 ............................................ 14

(七) 设计总结 ............................................ 16 参考文献 .................................................... 16 1

(一) PLC概述

可编程序控制器(Programmabie Logic Controller,缩写PLC)是以微处理器为基础,综合计算机、通信、联网以及自动控制技术而开发的新一代工业控制装置。可编程序控制器是随着技术的进步与现代社会生产方式的转变,为适应多品种、小批量生产的需要,生产、发展起来的一种新型的工业控制装置,在工业自动化各领域取得了广泛的应用。

1.1 PLC的硬件结构

PLC分为固定式和组合式(模块式)两种。固定式包括CPU板、I/O板、显示面板、内存块、电源等,模块式包括CPU模块、I/O模块、内存、电源模块、底板或机架。其结构如图1所示。中央处理单元(CPU)是PLC 的控制中枢,按照系统程序赋予的功能接收并存储从编程器键入的用户程序和数据、存储器I/O以及警戒定时器的状态;并能诊断用户程序中的语法错误。当PLC 投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O 映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后,按指令的规定执行逻辑或算数运算的结果送入I/O 映象区或数据寄存器内,等所有的用户程序执行完毕之后,最后将I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行直到停止。

2

图1 PLC的结构图

1.2 PLC的工作原理

PLC的CPU则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。

当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段:

1输入采样阶段

在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

3

2用户程序执行阶段

在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

3输出刷新阶段

当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。

1.3 s7-200的概述

西门子S7系列可编程控制器分为S7-400、S7-300、S7-200三个系列,分别为S7系列的大、中、小型可编程控制器系统。S7-200系列可编程控制器有CPU21X系列,CPU22X系列,其中CPU22X型可编程控制器提供了4个不同的基本型号,常见的有CPU221,CPU222,CPU224和CPU226四种基本型号:

小型PLC中,CPU221价格低廉能满足多种集成功能的需要。CPU 222是S7-200家族中低成本的单元,通过可连接的扩展模块即可处理模拟量。CPU 224具有更多的输入输出点及更大的存储器。CPU 226和226XM是功能最强的单元,可完全满足一些中小型复杂控制系统的要求。四种型号的PLC具有下列特点:

集成的24V电源

4

可直接连接到传感器和变送器执行器,CPU 221和CPU222具有180mA输出。CPU224输出280mA,CPU 2

26、CPU 226XM输出400mA可用作负载电源。

高速脉冲输出

有2路高速脉冲输出端,输出脉冲频率可达20KHz,用于控制步进电机或伺服电(3)通信口CPU 2

21、CPU222和CPU224具有1个RS-485通信口。

CPU 2

26、CPU 226XM具有2个RS-485通信口。支持PPI、MPI通信协议,有自由口通信能力。

(4)模拟电位器CPU221/222有1个模拟电位器,CPU224/226/226XM有2个模拟电位器。模拟电位器用来改变特殊寄存器(SMB28,SMB29)中的数值,以改变程序运行时的参数。如定时器、计数器的预置值,过程量的控制参数。

(5)中断输入允许以极快的速度对过程信号的上升沿作出响应。

(6)EEPROM存储器模块(选件)可作为修改与拷贝程序的快速工具,无需编程器并可进行辅助软件归档工作。

(7)电池模块用户数据(如标志位状态、数据块、定时器、计数器)可通过内部的超级电容存储大约5天。选用电池模块能延长存储时间到200天(10年寿命)。电池模块插在存储器模块的卡槽中。

(8)不同的设备类型CPU 221~226各有2种类型CPU,具有不同的电源电压和控制电压。

(9)数字量输入/输出点CPU 221具有6个输入点和4个输出点;CPU 222具有8个输入点和6个输出点;CPU 224具有14个输入点和10个输出点;

5

CPU226/226XM具有24个输入点和16个输出点。CPU22X主机的输入点为24V直流双向光电耦合输入电路,输出有继电器和直流(MOS型)两种类型

(10)高速计数器CPU 221/222有4个30KHz高速计数器,CPU224/226/226XM有6个30KHz的高速计数器,用于捕捉比CPU扫描频率更快脉冲信号。

(二) 交通信号灯

交通十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。靠什么来实现这井然秩序呢?靠的是交通信号灯的自动指挥系统。那么控制系统是如何实现红、绿、黄三种颜色信号灯有条不紊工作的呢?交通信号灯控制方式很多,可以用电子电路来实现,也可以用单片机编程控制来实现。本文主要介绍如何利用PLC来实现十字路口交通灯的控制。

随着社会的发展,人们的消费水平不断提高,私人车辆不断的增加。人多、车多、道路少的道路交通状况已经很明显了。所以采用有效的方法控制交通灯是势在必行的。PLC的智能控制原则是控制系统的核心,采用PLC根据不同时刻车流量的不同,将红绿灯时长按一定的规律分档。这样就可以达到最大限度的有车放行,减少十字路口的车辆滞留,缓解交通拥挤,实现最优控制,从而提高交通控制系统的效率。

交通信号灯的出现,使得交通得以管制,对于疏导交通流量,提高道路通行能力,减少交通事故有明显效果。为了实现交通道路的管制,力求交通管理先进性、科学化。

6

用可编程控制器实现交通灯管制的控制系统,以及该系统软、硬件设计方法。实验证明该系统实现简单、经济,能够有效的疏导交通,提高交通路口的通行能力。分析了现代城市交通控制和管理问题的现状,结合交通实际情况阐述了交通控制系统的工作原理,给出了一种简单实用的城市交通灯控制系统的PLC设计方案。可编程控制器在工业自动化中的地位极其重要。广泛应用于各个行业。随着科技的发展,可编程控制器的功能日益完善,加上小型化、低价格、可靠性高,在现代工业中的作用更加突出。

(三) 方案设计

3.1控制要求

交通灯控制系统的控制要求如下:

(1)信号灯受一个启动开关控制,当启动开关接通时,信号灯系统开始工作,且先南北红灯亮,东西绿灯亮。当启动开关断开时,所有信号灯都熄灭。

(2)南北红灯亮维持25秒,在南北红灯亮的同时东西绿灯也亮,并维持20秒。到20秒时,东西绿灯闪亮,闪亮3秒后熄灭。在东西绿灯熄灭时,东西黄灯亮,并维持2秒。到2秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭,绿灯亮。 (3)东西红灯亮维持30秒。南北绿灯亮维持20秒,然后闪亮3秒后熄灭。同时南北黄灯亮,维持2秒后熄灭,这时南北红灯亮,东西绿灯亮。周而复始

3.2系统设计方案分析

按照交通灯系统控制要求下,结合西门子S7-200系列可编程控制器的特性,选择适合的型号。设计思想分析如下:给一个启动的输入信号,要配合一个SB1的按钮,当SB1启动按钮动作,系统工作。

7

当启动开关SD合上时,I0.0触点接通,Q0.2得电,南北红灯亮;同时Q0.2的动合触点闭合,Q0.3线圈得电,东西绿灯亮。1秒后,T49的动合触点闭合,Q0.7线圈得电,模拟东西向行驶车的灯亮。维持到20秒,T43的动合触点接通,与该触点串联的T59动合触点每隔0.5秒导通0.5秒,从而使东西绿灯闪烁。又过3秒,T44的动断触点断开,Q0.3线圈失电,东西绿灯灭;此时T44的动合触点闭合、T47的动断触点断开,Q0.4线圈得电,东西黄灯亮,Q0.7线圈失电,模拟东西向行驶车的灯灭。再过2秒后,T42的动断触点断开,Q0.4线圈失电,东西黄灯灭;此时起动累计时间达25秒,T37的动断触点断开,Q0.2线圈失电,南北红灯灭,T37的动合触点闭合,Q0.5线圈得电,东西红灯亮,Q0.5的动合触点闭合,Q0.0线圈得电,南北绿灯亮。1秒后,T50的动合触点闭合,Q0.6线圈得电,模拟南北向行驶车的灯亮。又经过25秒,即起动累计时间为50秒时,T38动合触点闭合,与该触点串联的T59的触点每隔0.5秒导通0.5秒,从而使南北绿灯闪烁;闪烁3秒,T39动断触点断开,Q0.0线圈失电,南北绿灯灭;此时T39的动合触点闭合、T48的动断触点断开,Q0.1线圈得电,南北黄灯亮,Q0.6线圈失电,模拟南北向行驶车的灯灭。维持2秒后,T40动断触点断开,Q0.1线圈失电,南北黄灯灭。这时起动累计时间达5秒钟,T41的动断触点断开,T37复位,Q0.3线圈失电,即维持了30秒的东西红灯灭。

3.3 交通灯状态图

十字路口交通灯如下图1所示,将12个交通灯进行编号

8

图2 十字路口交通灯状态图

3.4 控制要求及程序流程:

(1)按下启动按钮,信号灯开始工作,东西向绿灯、南北向红灯同时亮。 (2)东西向绿灯亮25s后,闪烁三次,频率为1s/次。然后东西向黄灯亮,2s后东西向红灯亮,30s后东西绿灯亮……按此循环。

(3)南北向红灯亮30s后,南北向绿灯亮,25s后,闪烁3次,频率为1s/次。然后南北向黄灯亮,2s后南北向红灯亮,30s后南北向绿灯亮……按此循环下去。

(四) 硬件设计

4.1 硬件选择

本设计采用PLC来实现对十字路口交通信号灯的控制,其控制方法是选用西门子的S7-200系列CPU222型号PLC对东西南北的红、黄、绿灯实现有规律的循环闪亮, 9

以达到对交通信号灯的控制。控制过程中采用顺序控制法用多个定时器自动实现对六个控制对象的控制。根据交通信号灯的亮灭规律,可用PLC编程对其实行自动控制。

4.2 PLC的I/O分配表

名称

启动按钮停止按钮

表1 交通信号灯PLC的输入/输出点分配表

输入信号

输出信号

代号 输入点编号

名称 代号 输出点编号

SB1

I0.0

南北向绿

L0

Q0.0

SB2 I0.1

南北向黄灯

L1 Q0.1

南北向红

L2 Q0.2

东西向绿

L3 Q0.3

东西向黄

L4 Q0.4

东西向红

L5 Q0.5

10

4.3 PLC的硬件接线图:

图5 PLC 控制接线图

端口I0.0为接入系统开关的传送信号,端口Q0.0接南北绿灯,端口Q0.1接南北黄灯,端口Q0.2接南北红灯,端口Q0.3接东西绿灯,端口Q0.4接东西黄灯,端口Q0.5接东西红灯。

11

(五) 软件设计

5.1 十字路口交通信号灯梯形图

13

(六)仿真实验

14

15

(七)设计总结

在这次课程设计中我遇到了一些问题,但加强了以往学过的理论的知识的应用。虽然这次的课程设计花了我一个星期的时间,通过这次的锻炼,我学到了很多的东西,不仅锻炼了自己的思考能力、绘图能力和程序仿真能力,还锻炼了综合应用知识的能力,同时,我也是在这次课程设计中意识到了自己的不足,我还有许多未知的知识和问题等着学习和处理,知道了今后需要更加努力,使自我能够不断完善。

经过本次课程设计,让我更加深刻的学习和巩固了PLC这门课程,不仅从理论上掌握了课堂上没有学懂的知识,还从实践中扩展了我的知识面,让我对我们专业的知识有了更加全面的认识,更加清晰的认识到我们专业知识的实用性是如此的强,不仅能培养我们的兴趣爱好,更对我们今后的求职就业起到至关重要的作用。

参考文献

[1] 许谬、王淑英.电气控制与PLC.机械工业出版社,2006. [2] 廖常初.PLC编程及应用(第3版).机械工业出版社,2008. [3] 罗宇航.流行PLC实用程序及设计.机械工业出版社,2006. [4] 罗宇航.流行PLC实用程序及设计.西安电子科技大学出版社,2006.

第四篇:德宝自动洗车机在美国发挥重要作用

德宝自动洗车机在美国展示重要地位

2011年9月,美国休斯顿。欧德巴斯旗下德宝自动洗车机在美国德克萨斯洲休斯顿连锁洗车场安装完毕。此次安装的德宝隧道式洗车机为全新的技术代表,是欧德巴斯在全球主要推荐洗车机类型。

欧德巴斯在美国拥有庞大的市场空间,同时受到美国客户的关注。欧德巴斯自诞生以来已经服务于超过60个国家及地区,关注质量与服务细节的建设是欧德巴斯追求的目标。

在美国,欧洲等发达国家,自动洗车行业发展已经非常成熟。应用的自动洗车机也是以美国制造的产品为主要导向,那么,欧德巴斯自动洗车机作为中国制造的产品优势何在?在中国,制造业发展已经趋于成熟,这主要显示在配套服务与制造、物流等方面的发展成熟性。都代表了中国制造业在全球的竞争力。早在1998年,欧洲及美国的制造业公司纷纷在中国开设工厂,这都代表了在中国开设工厂的全球竞争力与优势。自动洗车机制造业在中国发展迅速,这也是全球制造业为中国带来的商业机会。欧德巴斯作为中国自动化洗车系统的代表品牌在全球的发展让客户感到惊讶,这归功于欧德巴斯企业全球定位以及文化。

欧德巴斯代表中国洗车机行业先后参加了2010年上海世界博览会以及2009年亚洲apec金融峰会。这些让全球客户开始注意欧德巴斯以及制造的自动洗车机,在全球汽车后服务市场,自动洗车属于细分市场的一部分,拥有不可忽视的市场份额,所以被全球拥有前瞻性的投资者看好。

在全球金融危机的影响下,因为投资的资金紧缩以及银行贷款额度缩小,都为投资者带来了不小的经营压力,洗车行业的从业者们纷纷在全球寻找性价比极高的自动化洗车机。当然,欧德巴斯在全球就代表了拥有极高性价比的洗车机品牌,毋庸置疑成为全球洗车行业的首选。欧德巴斯在美国的订单络绎不绝,主要是源于欧德巴斯自动洗车机的质量控制、专业服务以及欧德巴斯美国公司团队,这些都快速让欧德巴斯在美国占有市场。欧德巴斯美国服务服务团队了解客户最真实的需要,因为他们在美国洗车行业从业经验超过30年,可以与客户实现快速接触,已达到有效服务。

欧德巴斯自动化洗车系统在美国洗车行业发挥重要作用,并且以不可替代的优势进入美国市场。我们需要您的支持以及建议,来为您提供更好的服务。欧德巴斯洗车机网站:

第五篇:基于PLC的变频调速恒压供水系统

毕 业 设 计 任 务 书

指导老师 ;

张继涛

基于PLC的变频调速恒压供水系统

1 引言

在供水系统中,恒压供水是指在供水网系中用水量发生变化时,出口压力保持不变的供水方式。本文采用计算机(PC)、可编程控制器(PLC)、变频器组成变频恒压供水监控系统,通过变频调速实现恒压供水、满足节能降耗的要求,而且有利于实现生产的自动化及远程监测。用水量变化具有随机性,用水高峰时水压不足,低谷时又造成能量浪费。变频恒压供水系统根据公共管网的压力变化,通过PLC和变频器自动调节水泵的增减、水泵电机的运行方式及电机的转速,实现恒压供水,既防止了能量空耗,又避免出现电机启动时冲击电流对设备的影响。

2 工作原理

变频恒压供水系统采用一台变频器拖动两台大功率电动机,可在变频和工频两种方式下运行;一台低功率的电机,作为辅助泵电机

启动方式:为避免启动时的冲击电流,电机采用变频启动方式,从变频器的输出端得到逐渐上升的频率和电压。启动前变频器要复位。

变频调速:根据供水管网流量、压力变化自动控制变频器输出频率,从而调节电动机和水泵的转速,实现恒压供水。如设备的输出电压和频率上升到工频仍不能满足供水要求时,PLC发出指令1号泵自动切换到工频电源运行,待1号泵完全退出变频运行,对变频器复位后,2号泵投入变频运行。

多泵切换:根据恒压的需要,采取无主次切换,即“先开先停”的原则接入和退出。在PLC的程序中,通过设置变频泵的工作号和工频泵的台数,由给定频率是否达到上限频率或下限频率来判断增泵或减泵。在用水量较小的情况下,采用辅助泵工作。 为了避免一台泵长期工作,任一泵不能连续变频运行超过3小时。当工频泵台数为零,有一台运行于变频状态时,启动计时器,当达到3小时时,变频泵的泵号改变,即切换到另一台泵上。当有泵运行于工频状态,或辅助泵启动时,计时器停止计时并清零。

故障处理:能对水位下限,变频器、PLC故障等报警。PLC故障,系统从自动转入手动方式。

3 PLC控制电路

系统采用S7-200PLC作下位机。S7-200PLC硬件系统包含一定数量的输入/输出(I/O)点,同时还可以扩展I/O模块和各种功能模块。输入点为6个,其中水位上、下限信号分别为I0.0、I0.1。输出点为10个,O0.0-O1.0对应PLC的输出端子。对变频器的复位是由输出点O1.0通过一个中间继电器KA的触点来实现的。根据控制系统I/O点及地址分配可知,系统共有5个开关量输入点,9个开关量输出点;1个模拟量输入点和1个模拟量输出点。可以选用CPU224PLC(14DI/10DO),再扩展一个模拟量模块EM235(4AI/1AO)。

4 PLC通信程序

S7-200PLC硬件功能完善,指令系统丰富。可为用户提供多种通讯方式:PPI方式,MPI方式,自由通讯口方式等。应用自由通讯口方式,使S7-200PLC可以与任何通信协议已知,具有串口通讯的智能设备和控制器(如打印机、变频器、上位PC机等)进行通信,也可以用于两个CPU之间简单的数据交换。该通信方式使可通信的范围大大增大,使控制系统配置更加灵活、方便。

采用PLC自由通讯口方案,PLC工作于从站,PC处于主站模式,PLC从站只响应来自主站的申请。主站向PLC从站发送指令格式的报文,读指令00为向从站PLC申请产生于PLC的数据,读取水压,频率,变频泵号,工频台数,辅助泵状态等数据;写指令01为向PLC传送产生于主站的数据,包括压力设定值和控制器输出值。在自由口通信模式下,通信协议完全由用户程序控制。通过设定特殊存储字节SMB30(端口0)或SMB130(端口1)允许自由口模式,用户程序可以通过使用发送中断、接收中断、发送指令(XMT)和接收指令(RCV)对通信口操作。

马勇 2010-4-27

第1章 绪论

目录

1.1 PLC的变频调速恒压供水系统的目的和意义 1.2 恒压供水的特点

1.2.1 恒压供水方式讨论 1.2.2 恒压供水的实现

1.3 变频恒压供水的现况

1.3.1 国内外变频供水系统现状 1.3.2 变频供水系统应用范围 1.3.3 变频供水系统的发展趋势

第2章 变频调速恒压供水分析

2.1 变频恒压供水的工艺调节过程介绍

2.2 调速系统的构建 2.2.1 调速原理

2.2.2 调节系统的计算方法

2.2.3 变频恒压供水频率变化分析

2.3 节能分析

2.3.1 水泵的基本参数和特性 2.3.2 水泵调速运行的节能原理

第3章 恒压供水系统

3.1 系统概述

3.2 控制系统的组成

3.2.1 供水系统的组成 3.2.2 系统功能说明

3.3 恒压供水系统的机理及调速泵的调速原理 3.3.1 恒压供水系统的工作原理 3.3.2 调速泵系统构成

3.4 变频器

3.4.1 变频器输入输出接口 3.4.2 变频器外围设备的选择及保养

3.5 变频调速恒压供水系统的特点

第4章 可编程控制器PLC

4.1 的定义

4.2 的发展阶段及发展方向 4.3 的特点与应用领域

4.3.1 可编程序控制器的特点

4.3.2 可编程序控制器与继电器控制系统的比较 4.3.3 可编程序控制器的应用领域

4.3.4 在现代自动控制系统应用中所面临的问题

4.4 我国常用 的性能比较研究

4.4.1 的一般结构 4.4.2 基本工作原理

4.5 我国常用 的性能特点

4.5.1 SIMATIC S7系列

4.5.2 S7-200系列可编程序控制器 4.5.3 控制系统设计内容 4.5.4 控制系统设计步骤 4.5.5 控制系统的硬件设计

4.6 控制系统的软件设计

4.6.1 软件设计概述 4.6.2 软件设计

4.6.3 程序设计的常用方法 4.6.4 程序设计步骤

第5章 PLC控制系统的设计

5.1 概述

5.2 输入输出 分配

5.2.1 输入口 5.2.2 输出口 5.2.3 辅助触点

5.3 控制系统功能介绍

5.4 恒压供水系统的流程图 5.5 控制系统的可靠性及应用程序设计

5.5.1 程序的优化设计 5.5.2 应用程序的设计

5.5.3 故障检测程序的设计

第6章 系统调试

6.1 变频器关键参数的设定

6.2 PLC的变频调速恒压供水系统调试

参考文献··········································

附录··········································

第一章

绪论

水是生命之源,人类生存和发展都离不开水。在通常的城市及乡镇供水中, 基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动, 把供水管网中的自来水送给用户。但供水机泵供水的同时,也消耗大量的能量, 如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能 耗,将具有重要经济意义。

我国供水机泵的特点是数量大、范围广、类型多,在工程规模上也有一定水平,但在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,有一定的差距。

随着社会经济的迅速发展,人们对供水质量和供水系统的可靠性要求不断提 高。衡量供水质量的重要标准之一是供水压力是否恒定,因为水压恒定于某些工 业或特殊用户是非常重要的,如当发生火警时,若供水压力不足或无水供应,不 能迅速灭火,会造成更大的经济损失或人员伤亡.但是用户用水量是经常变动的, 因此用水和供水之间的不平衡的现象时有发生,并且集中反映在供水的压力上: 用水多而供水少,则供水压力低;用水少而供水多,则供水压力大。保持管网的 水压恒定供水,可使供水和用水之间保持平衡,不但提高了供水的产量和质量, 也确保了供水生产以及电机运行的安全可靠性。

对于大多数采用供水企业来说,传统供水机泵存在日常运行费用太高,供水 成本居高不下,单位供水的能耗偏大的问题,寻求供水与能耗之间的最佳性价比, 是困扰企业的一个长期问题。目前各供水厂的供水机泵设计按最大扬程与最大流 量这一最不利条件设计,水泵大多数时间在设计效率以下运行。导致电动机与水 泵之间常常出现大马拉小车问题(如图 1.1)。因此,如何解决供水与能耗之间的 不平衡,寻求提高供水效率的整体解决方案,是各供水解水企业关心的焦点问题 之一。

变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、 空气压缩机、制冷压缩机等高能耗设备上广泛应用。利用变频技术与自动控制技 术相结合,在中小型供水企业实现恒压供水,不仅能达到比较明显的节能效果, 提高供水企业的效率,更能有效保证从水系统的安全可靠运行. 变频恒水压供水系统集变频技术、电气传动技术、现代控制技术于一体。采 用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的 集中管理与监控;同时可达到良好的节能性,提高供水效率。所以研究设计基于PLC变频调速的恒定水压供水系统(简称变频恒压供水,如图1.2),对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。

1.1PLC的变频调速恒压供水系统的目的和意义

我国长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一 直比较落后,工业自动化程度低。主要表现在用水高峰期,水的供给量常常低于 需求量,出现水压降低供不应求的现象;而在用水低峰期,水的供给量常常高于 需求量,出现水压升高供过于求的情况,此时会造成能量的浪费,同时还有可能 造成水管爆裂和用水设备的损坏。传统调节供水压力的方式,多采用频繁启/停电。

机控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。且由于是二次供水,不能保证供水质的安全与可靠性。而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。

1.2恒压供水的特点

恒压供水是指用户段不管用水量大小,总保持管网水压基本恒定,这样,既可满足各部位的用户对水的需求,又不使电动机空转,造成电能的浪费。而变频恒压供水的工艺调节过程特点; 1.2.1 恒压供水方式讨论

泵组的切换开始时,若硬件、软件皆无备用(两者同时有效时硬件优先),1#泵变频启动,转速从 开始随频率上升,如变频器频率到达 ,而此时水压还在下限值,延时一段时间(由 内部时间继电器控制,目的是避免由于干扰而引起误动作)后,1#泵切换至工频运行,同时变频器频率由 滑停至 ,2#泵变频启动,如水压仍不满足,则依次启动3#、4#泵;若开始时1#泵备用,则直接启2#变频,转速从0开始随频率上升,如变频器频率到达 ,而此时水压还在下限值,延时一段时间后,2#泵切换至工频运行,同时变频器频率由 滑停至 ,3#泵变频启动,如水压仍不满足,则启动4#泵;若1#、2#泵都备用,则直接启3#变频,具体泵的切换过程与上述类同。 1.2.2 恒压供水的实现

同样,如水压在上限值,若3台泵(假设为1#、2#和3#)运行时,3#泵变频运行降到 ,此时水压仍处于上限值,则延时一段时间后使1#泵停止,3#泵变频器频率从 迅速上升,若此后水压仍处于上限值,则延时一段时间后使2#泵停止。这样的切换过程,有效地减少泵的频繁启停,同时在实际管网对水压波动做出反应之前,由变频器迅速调节,使水压平稳过渡。以往的变频恒压供水系统在水压高时,通常是采用停变频泵,再将变频器以工频运行方式切换到正在以工频运行的泵上进行调节。这种切换的方式,理论上要比直接切工频的方式先进,但其容易引起泵组的频繁启停,从而减少设备的使用寿命。而我们这次的设计的系统中,要求直接停工频泵,同时由变频器迅速调节,只要参数设置合适,即可实现泵组的无冲击切换,使水压过渡平稳,有效的防止水压的大范围波动及水压太低时的短时缺水现象,提高供水品质。

1.3 变频恒压供水的现况

1.3.1

国内外变频供水系统现状

变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。目前国外的恒 压供水系统变频器成熟可靠,恒压控制技术先进。国外变频供水系统在设计时主 要采用一台变频器只带一台水泵机组的方式。这种方式运行安全可靠,变压方式 更灵活。此方式的缺点必是电机数量和变频的数量一样多,因而投资成本高。 国外生产的变频器,特别是供水厂用变频器,相对于国产变频器而言,价格明显偏高,维护成本也高于国内产品。

1.3.2

变频供水系统应用范围

变频恒压供水系统在供水行业中的应用,按所使用的范围大致分为三类: (1)小区供水(加压泵站)变频恒压供水系统

这类变频供水系统主要用于包括工厂、小区供水、高层建筑供水、乡村加压 站,特点是变频控制的电机功率小,一般在135kw以下,控制系统简单。由于这

一范围的用户群十分庞大,所以是目前国内研究和推广最多的方式.如希望集团 (森兰变频器)推出的恒压供水专用变频器(5.sk认叹22kw)。 (2)国内中小型供水厂变频恒压供水系统

这类变频供水系统主要用于中小供水厂或大中城市的辅助供水厂。这类变频 器电机功率在135kV沐320kw之间,电网电压通常为ZOOV或380V。受中小水厂

规模和经济条件限制,目前主要采用国产通用的变频恒压供水变频器。 (3)大型供水厂的变频恒压供水系统

这类变频供水系统用于大中城市的主力供水厂,特点是功率大(一般都大于

犯OKW)、机组多、多数采用高压变频系统。这类系统一般变频器和控制器要求较

高,多数采用了国外进口变频器和控制系统。如利德福华的一些高压供水变频器 在本文中,研究和设计的变频器是以第二种应用范围为基础。

目前国内,除了高压变频供水系统,多数恒压供水变频系统均声称只要改变 容量就可以通用于各种供水范围,但在实际运用中,不同供水环境对变频器的要 求和控制方式是不一致的,大多数变频器并不能真正实现通用。以中小水厂供水 环境来说,由于其包括了自来水生产系统,其温湿度及腐蚀程度都大于常见小区 和加压泵站,在水泵组搭配上、需要处理的信号(如水质信号停机管理)也多于小 区供水系统,所以在部分条件复杂的中小水厂,采用通用的恒压供水变频系统并 不能完全满足实践要求,现部分中小水厂已认识到这一情况,并针对实际情况对 变频恒压供水系统加以改进和完善. 1.3.3变频供水系统的发展趋势

变频供水系统目前正在向集成化、维护操作简单化方向发展

目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要 采用进口元件组装或直接进口国外变频器,结合PLC或PID调节器实现恒压供水,

在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的 优势占领了相当部分小容量变频恒压供水市场。但在大功率大容量变频器上,国 产变频器有待于进一步改进和完善r仆网

第二章

变频调速恒压供水分析

2.1变频恒压供水的工艺调节过程介绍

变频恒压供水所用水泵主要是离心泵,而普通离心泵如图2.1所示:叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动,泵壳中央有一液体吸入口4与吸入管5连接,液体经底阀6和吸入管进入泵内,泵壳上的液体排出口8排出管9连接。

在泵启动前,泵壳内灌满被输送的液体:启动后,叶轮由轴带动高速转动, 叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘 并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐 渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道, 送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由 于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见, 只要叶轮不断地转动,液体便会不断地被吸入和排出。

2.2 调速系统的构建

水泵的调速运行构建,是指水泵在运行中根据运行环境的需要,人为的改变运行工作状况点(简称工况点)的位置,使流量、扬程、轴功率等运行参数适应新的工作状况的需要。水泵的工况点是由水泵的性能曲线和管网的特性曲线的交点确定的。因此,只要这两条曲线之一的形状或位置有了改变,工况点的位置也就随之改变。所以,水泵的调节从原理上讲是通过改变水泵的性能曲线或管网特性曲线或二者同时改变来实现的。

水泵的调节方式与节能的关系非常密切,过去普遍采用改变阀门或挡板开度 的节流调节方式,即改变装置管网的特性曲线进行调节。这种调节方式虽然简便 易行,但往往造成很大的能量损失。大量的统计调查表明,一些在运行中需要进 行调节的水泵,其能量浪费的主要原因,往往是由于采用不合适的调节方式。因 此,研究并改进它们的调节方式,是节能最有效的途径和关键所在[l0]41气

水泵的调节方式可分为恒速调节与变速调节系统。详细划分如下:

目前常见的调节方法有节流调节、动叶调节、改变泵的运行台数调节、液力 祸合器调节、绕线式异步电动机的串极调速、变极调速、变频调速等

2.2.1 调速原理

水泵的恒速调节主要有节流调节、动叶调节、改变泵的运行台数调节三种.

(1)节流调节

节流调节是在水泵的出口或进口管路上装设阀门或挡板,通过改变阀门或挡板的开度,使装置需要扬程曲线发生变化,从而导致水泵工作点位置的变化。

节流调节优点是调节简单、可靠、方便,且调节装置的初投资很少,故以前各种离心泵多采用这种调节方式。缺点是能量损失很大,目前正逐渐被其它调节方式所取代。

(2)动叶调节

采用动叶调节的水泵,在泵的轮毅内部安装动叶调节机构,从而使动叶调节得以实现。对于大型的泵,可以采用液压传动调节.

动叶调节的优点是:在调节过程中其效率变化很小,能在较大范围保持高效率。缺点是:动叶调节机构复杂,控制自动化程度低;成本高,通常适用大容量水泵,对中小供水厂的水泵通常不适用。

(3)改变机泵运行台数调节

改变机泵运行台数调节是根据不同的流量要求,采用不同数量和型号的机泵进行并联运行,来满足供水量要求.优点是:它不改变电机和水泵的电气及机械结构,在水泵台数众多、搭配合理的情况下,可以达到较好的调节效果。缺点是:不能实现连续调节、需要大量的机泵进行合理搭配、随着供水量的变化要不断启停电机;电能损失较大。因此,目前此种方法虽大量使用,但正逐步被新的流量调节方式取代。

从恒速调节的分析可以看出,由于恒速调节要不结构复杂,要不能量损失很大,因此,正逐步被变速调节所取代.

这里所指的速度是水泵的转速.水泵的变速调节可分为变速传动装置调节和变电动机转速调节。

(1)变速传动装置

定速电动机驱动的水泵可以通过传动装置来实现变速调节。变速传动装置按其工作特性可分为两类。一类是有级变速装置,如齿轮变速等;另一类是无级变速装置,主要有液力祸合器、油膜转差离合器、电磁转差离合器等。液力祸合器、油膜转差离合器及电磁转差离合器在传动变速时具有一个共同的特点:传动装置产生的传动损失在其所传递功率中所占的比例与水泵的转速变化的大小成正比,转速变化越大,传动损失所占的比例也越大,因此,这类变速调节方式也被称为低效变速调节方式。

1)液力祸合器

水泵通过液力祸合器实现变速调节,从液力藕合器的特性来看,其调节效率等于转速比,故当调节量越大,其转速比越低,传动效率也越低。

调速型液力祸合器用于叶片式水泵的变速调节时,主要具有以下优点:可以输出连续的、无级的、变化的转速;可以平稳的启动、加速;电动机能空载或轻载启动,降低启动电流,节约电能;液力祸合器是无级调速,故便于实现自动控制,适用于各伺服系统控制:与阀门节流调节相比较,节能效果显著。

液力祸合器的缺点:在电动机额定转速较低的场合,要求同样的转矩而采用较小的转速时,液力祸合器的工作腔直径将加大,这不但增加了造价,而且还会使祸合器调速的延迟时间增加;大功率的液力祸合器设备复杂;在运转中随着负载的变化,转速比也相应变化,因此不可能有精确的转速比:液力祸合器一旦产生故障,水泵也不能继续工作。

2)电磁转差离合器

电磁转差离合器又称电磁离合器、涡流联轴器等。电磁调速电动机的主要优点是:可靠性高,只要把绝缘处理好,就能长期无检修运行;控制装置的容量小;结构简单、加工容易,价格便宜。

电磁调速电动机的缺点是:存在转差损失,尤其是对凡较低的电磁调速电动机,运行经济性较低;调速时响应时间较长:噪声较大。

(2)变电动机转速

由电机学得知,交流电动机的同步转速n,与电源频率fl、极对数p之间的关系式为: 由式2.4可以看出,要实现交流电动机的调速,可以通过改变磁极对数p和改变电源频率fl实现,下面就两种变速调节方式进行比较1161一即气1)异步电动机的变极调速

变极调速原理:异步电动机在正常运行时,通常其转差率5很小,则由式2.4知,在电源频率fl不变的情况下,改变电动机绕组的极对数,就可改变同步转速n: 从而改变异步电动机的转速no 变极调速的主要优点是:调速效率高,仅是因在设计变极电动机时要兼顾不同转速时的性能指标,与普通的全速电动机相比较,其效率和功率因数要稍低一些:调速控制设备简单,仅用转换开关或接触器;初投资低,特别是中小型变极电动机价钱和定速电动机相差不是很大:维护方便,除轴承外,不需要特别的维修,可靠性较高,在相当恶劣的环境下可使用。

变极调速的主要缺点是:有级调速,不能进行连续调速。此外,变极电动机在变速时电力必须瞬间中断,不能进行热态变换,因此在变速时电动机有电流冲击现象发生.高压电动机若需进行频繁地切换变速时,则其切换装置的安全可靠性尚需进一步完善提高。因此,变极调速目前应用较少。

2)异步电动机的变频调速

由式2.4可知,极对数p一定的异步电动机,在转差率变化不大时,转速基本上与电源频率成正比。因此,只要能设法改变fl.即可改变n。基于这个原理,变频调速就是用晶闸管等变流元件组成的变频器作为变频电源,通过改变电源频率的办法,实现转速调节。图2.2为变频调速系统的示意图。

在对变速传动装置和变电动机调节方式进行比较时,我们以两者的代表,也是目前运用最广的两种变速方式:液力祸合器调速和变频器调速进行对比,如表21,从中可以看出,采用变频器进行转速调节,具有较大的优势。

2.2.3调节系统的计算方法 在供水系统中,最根本的控制对象是流量。因此,要讨论节能问题,必须从 考察调节流量的方法入手。常见的方法有阀门控制法和转速控制法两种。供水系统中对水压流量的控制,传统上采用阀门调节实现。由于水泵的轴功率与转速的立方成正比,因此水泵用变频器来调节转速能实现压力或流量的自动控制,同时可获得大量节能。闭环恒压供水系统正越来越多地取代高位水箱、水塔等设施及阀门调节。(l)阀门控制法:即通过关小或开大阀门来调节流量,而转速保持不变(通常为额定转速)。阀门控制法的实质是:水泵本身的供水能力不变,而是通过改变水路中的阻力大小来强行改变流量,以适应用户对流量的要求。这时,管阻特性将随阀门开度的改变而改变,但是扬程特性不变。

如图24所示,设用户所需流量为Ox为额定流量的印喊即Ox=60%QN),当通过关小阀门来实现时,管阻特性将改变为曲线③,而扬程特性则仍为曲线①,故供水系统的工作点移至E点,这时: 流量减小为Q以=Ox);扬程增加为H。;由式(26)知,供水功率Pa与面积。DEJ成正比,其中Cp为比例常数,Q为流量。

恰到好处地满足了用户所需的用水流量,这就是恒压供水所要达到的目的。 据有关资料介绍,水泵工作效率相对值

(1)水泵工作效率的近似计算公式 丫的近似计算公式如(2.17): 流量和转速的相对值:

(2)不同控制方式时的工作效率 由式(2.1刀可知,当通过关小阀门来减小流量时,由于转速不变,n’=1,比值,可见,随着流量的减小,水泵工作的效率降低十分明显。

在转速控制方式时,由于在阀门开度不变的情况下,流量Q*和转速n’是成正比的,比值Q’/n’不变。就是说,采用转速控制方式时,水泵的工作效率总是处于最佳状态。

所以,转速控制方式与阀门控制方式相比,水泵的工作效率要大得多.这是变频调速供水系统具有节能效果的方面之一121冲3]. 从电动机的效率看节能

在设计供水系统时,由于:(1)对用户的管路情况无法预测:(2)管阻特性难 以精确计算:(3)必须对用户的需求留有足够的余地。因此,在决定额定扬程和额定流量时,通常裕量较大。

所以,在实际的运行过程中,即使在用水流量的高峰期,电动机也常常处于轻载状态,其效率和功率因数都较低。采用了转速控制方式后,可将排水阀完全打开而适当降低转速。由于电动机在低频运行时,变频器具有能够根据负载轻重调整输入电压的功能,从而提高了电动机的工作效率。这是变频调速供水系统具有节能效果的另外一个方面1川4311.

图 2.5“两种常见调速方式效率曲线”为典型的液力偶合器和常见变频器的效率一转速曲线,随着输出转速的降低,液力偶合器的效率基本上正比降低 (例如: 额定转速时效率0.95,75%转速时效率约0.72,20%转速时效率约019),而变频器在输出转速下降时效率仍然较高 (例如:额定转速时效率住97,了5%以上转速时效率大于0.95,20%以上转速时效率大于0.9)。

从曲线数据看,当输出转速降低时,液力偶合器的效率比变频调速的效率下降快得多,因此变频调速的低速特性比液力祸合器要好。当然,有一点我们应该看到,就是用于水泵(风机)类负载时,由于其轴功率与转速的三次方成正比,当转速下降时,虽然液力偶合器效率正比下降,但电动机综合轴功率还是随着转速的下降成二次方比例下降,因此也能起到节能作用。

2.2.3 变频恒压供水频率变化分析

由于变频恒压供水基本上都采用了变频启动,启动频率低,启动电流小,因 此,除了对供水机泵和供水管网有保护作用,对供水电机和电网也有良好的保护作用。供水系统电机直接启动与变频启动的对比表如表2.2所示。

2.3 节能分析

恒压供水系统的基本特性。根据扬程特性曲线和管阻特性曲线可以看 出用水流量和供水流量处于平衡状态时系统稳定运行。在供水系统中采用变频调速是由于水泵的功率与转速的立方成正比,所以调速控制方式要比阀门控制方式节能效果显著.最后从理论上分析了采取变频恒压供水方式对供水安全积极作用:可以消除水锤效应,减少电机电网冲击,延长系统的运行寿命。

2.3.1 水泵的基本参数和特性

在变频恒压供水系统中,供水压力是通过对变频器输出频率的控制来实现的。

确定供水压力和输出频率的关系是设计控制环节控制策略的基础,是确定控制算法的依据。送水泵站所采用的水泵是离心泵,它是通过装有叶片的叶轮高速旋转来完成对水流的输送,也就是通过叶轮高速旋转带动水流高速旋转,靠水流产生的离心力将水流甩出去。离心泵也因此而得名。在给水排水工程中,从使用水泵的角度来看,水泵的工作必然要和管路系统以及许多外界条件联系在一起.在给水排水工程中,把水泵配上管路以及一切附件后的系统称为 “装置”,在控制系统的设计中,真正对系统的分析和设计有价值的也是这种成为系统的装置,而不是单单的孤立水泵。在水泵结构和理论中,有一些评价水泵性能的参数,供水系统的主要参数如下:流量(Q):单位时间内流过管道内某一截面的水流量,在管道截面不变的情况下,其大小决定于水流的速度。常用单位是时/m访。

供水系统把水从一个位置上扬到另一位置时水位的变化量,数值上等于对应的水位差。其常用单位是m。轴功率(几):水泵轴上的输入功率(电动机的输出功率),或者说是水泵取用的功率。

供水功率(几):供水系统向用户供水时所消耗的功率几你叨,供水功率与流量和扬程的乘积成正比:

式中Cp一 比例常数。

工作效率为,):水泵的供水功率Pc和轴功率界之比,如式2.6所示。这里所说的水泵工作效率,实际上包含了水泵本身的效率和供水系统的效率。其根据实际供水的扬程和流量算得的功率,是供水系统的输出功率。

其中有效功率是指单位时间内通过水泵的液体从水泵那里得到的能量叫做有效功率。转速(n卜水泵叶轮的转动速度。

根据水泵理论,如图2.3所示.

2.3.2 水泵调速运行的节能原理

由于水泵在送水过程中,清水池水位一般高于水泵的测量点,所以不存在进水口抽真空,所以在进水口的真空值为0.水泵进水口与出水口都沿水平方向放置,位置差为0。水泵在正常工作时,动能的变化相对较小。考虑这些具体情况,上式可以改写为:

由于水泵是由一台交流感应电动机带动运行的,电机的转速与水泵的转速相同。电机的输出有效功率与水泵的轴功率相等。在电机理论中,感应电机的机械

功率为:

在变频调速时,由于磁通中m不变,从电机公式(212)可以看出,要使主磁 通中m保持不变,则UI/fl必须保持不变。

因此在变频调速过程中.电压应该与频率成正比例变化,设 代入式(2.n)得

根据能量守恒定律,有

水泵装置在变频调速的工作状态下运行时,有: 其中杯为电机的效率。所以,

从上式可以看出,当变频器的输出频率一定的情况下,当用户用水量增大,从而Q增大时,压力表的读数将会变小,即管网供水压力将会降低。为了保持供水压力,就必须增大变频器的输出频率以提高水泵机组的转速;当用户的用水量减小时,Q减小,在变频器输出频率不变的情况下,管网的供水压力将会增大,为了减小供水的压力,就必须降低变频器的输出频率.由于用户的用水量是始终在变化的,虽然在时段上具有一定的统计规律,但对精度要求很高的恒压控制来讲,在每个时刻它都是一个随机变化的值。这就要求变频器的输出频率也要在一个动态的变化之中,依靠对频率的调节来动态地控制管网的供水压力,从而使管网中的压力恒定。

第3章

恒压供水系统

3.1 系统概述

从变频恒压供水的原理分析可知,该系统主要有压力传感器、压力变送器、 变频器、恒压控制单元、水泵机组以及低压电器组成.系统主要的设计任务是利 用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。根据系统的设计任务要求,结合系统的使用场所,有以下几种方案可供选择。

(1)有供水基板的变频器+水泵机组+压力传感器

这种控制系统结构简单,它将Pm调节器和P比 可编程控制器等硬件集成在变频器供水基板上,通过设置指令代码实现PLC 和PID等电控系统的功能。它虽然简化了电路结构,降低了设备成本,但在压力设定和压力反馈值的显示方面比较麻烦,无法自动实现不同时段的不同恒压要求,在调试时,PID调节参数寻优困难,调节范围小,系统的稳态、动态性能不易保证。其输出接口的扩展功能缺乏灵活性,数据通信困难,并且限制了带负载的容量,因此仅适用于要求不高的小容量场合。

(2)通用变频器十单片机(包括变频控制、调节器控制)十人机界面+压力传感器;这种方式控制精度高、控制算法灵活、参数调整方便,具有较高的性能价格比,但开发周期长,程序一旦固化,修改较为麻烦,因此现场调试的灵活性差,同时变频器在运行时,将产生干扰,变频器的功率越大,产生的干扰越大,所以必须采取相应的抗干扰措施来保证系统的可靠性。该系统适用于某一特定领域的小容量的变频恒压供水中。

(3)通用变频器+PLC(包括变频控制、调节器控制卜人机界面+压力传感器这种控制方式灵活方便。具有良好的通信接口,可以方便地与其他的系统进行数据交换;通用性强,由于PLC产品的系列化和模块化,用户可灵活组成各种规模和要求不同控制系统。在硬件设计上,只需确定P比 的硬件配置和拍 的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。同时由于P比 的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。因此该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关。 3.2 控制系统的组成

供水控制系统一般安装在供水控制柜中,包括供水控制器(P比 系统)、变频 器和电控设备三个部分: (1)供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接 对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据 信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和 接触器对执行机构(即水泵成行控制. (2)变频器:它是对水泵进行转速控制的单元.变频器跟踪供水控制器送来

的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。根据水泵机组中 水泵被变频器拖动的情况不同,变频器有如下两种工作方式: 1)变频循环式:变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz 时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统先将变频器从该 水泵电机中脱出,将该泵切换为工频的同时用变频去拖动另一台水泵电机。

2)变频固定式:变频器拖动某一台水泵作为调速泵,当这台水泵运行50Hz 时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统直接启动另一台恒速水泵,变频器不做切换,变频器固定拖动的水泵在系统运行前可以选择。

3.2.1 供水系统的组成

供水控制系统一般安装在供水控制柜中,包括供水控制器(P比 系统)、变频 器和电控设备三个部分组成。

3.3 恒压供水系统的机理及调速泵的调速原理

恒压供水系统的控制方案有多种,有1台变频器控制1台水泵的简单控 制方案,也有1台变频器控制几台水泵的方案,下面将分别加以叙述. (l)单台变频器控制单台水泵

单台变频器控制单台水泵的控制方案在国内通常是指是一台变频器控制一台水泵。由于全部变频系统中,变频器、控制器、电机均无备份设备,出现问题无法切换,故目前多适用于用水量不大,对供水的可靠性要求不高的场合。该控制方案的控制原理框图见图3.2,电路见图3.3。

值得一提的是,在国外或国内少数大企业,也有一种每台变频器只带一 台水泵的运行方式,但它的控制方式与上面是不同的,这些泵站往往是同时配备了多台变频器配多台水泵,采用集中控制的办法,这种变频系统与国内水泵站常用的一台变频器控制单台水泵的工作方式是完全不一样的。在这种系统中,由于有多台变频器,各水泵既可以同时变频运行,也可以分别工频运行,使其可靠性、安全性、可调节性大大优于国内常见的各种控制方式,不过在成本上,也远远高于目前国内的常用的变频恒压供水系统。 (2)单台变频器控制多台水泵

利用单台变频器控制多台水泵的控制方案适用于大多数供水系统,是目前应用中比较先进的一种方案。下面以单台变频器控制2台水泵的方案来说明。该控制方案的控制原理见图3.4。

3.2.2 系统功能说明

控制系统的工作原理如下:根据系统用水量的变化,控制系统控制2台水泵按1一2一3一4一1的顺序运行,以保证正常供水。开始工作时,系统用水量不多,只有 1号泵在变频器控制下运行,2号泵处于停止状态,控制系统处于状态 1。当用水量增加,变频器输出频率增加,则1号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作己不能满足系统用水的要求,此时,通过控制系统,1号泵从变频器电源转换到普通的交流电源,而变频器电源启动

3.3.1 恒压供水系统的工作原理

根据系统用水量的变化,控制系统控制2台水泵按1一2一3一4一1的顺序运行,以保证正常供水。开始工作时,系统用水量不多,只有 1号泵在变频器控制下运行,2号泵处于停止状态,控制系统处于状态 1。当用水量增加,变频器输出频率增加,则1号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作己不能满足系统用水的要求,此时,通过控制系统,1号泵从变频器电源转换到普通的交流电源,而变频器电源启动。 2号泵电机,控制系统处于状态2. 当系统用水高峰过后,用水量减少时,变频器输出频率减少,若减至设定频

率时,表示只有 1台水泵工作已能满足系统用水的要求,此时,通过控制系统,可将 1号泵电机停运,2号泵电机仍由变频器电源供电,这时,控制系统处于状态3。

当用水量再次增加,变频器输出频率增加,则2号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作已不能满足系统用水的要求,此时,通过控制系统的控制,2号泵从变频器电源转换到普通的交流电源,而变频器电源启动1号泵电机,控制系统处于状态4. 当控制系统处于状态4时,用水量又减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统供水的要求,此时,通过控制系统的控制,2号泵从变频器电源转换到普通的交流电源,而变频器电源启动1号泵电机,控制系统处于状态4。

当控制系统处于状态4时,用水量又减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统用水的要求,此时,通过控制系统的控制,可将2号泵电机停运,1号泵电机仍由变频器供电,这时,控制系统又回到了状态1。如此循环往复的工作,以满足系统用水的需要。 (3)单台变频器控制单台水泵以及其他水泵

单台变频器控制单台水泵以及其他水泵启停的控制方案与控制方案2有许多相同之处,只是方案2中,变频器可在水泵电机间轮换工作,而控制方案3则不同,变频器只控制某1台泵,不能去控制其它泵,其它泵工作在普通电源的控制下.下面以2台泵中的1台由变频器供电,另外1台由普通交流电源供电的恒压供水系统来加以说明。

2台水泵中,1台是由变频器供电的变速泵,另外 1台为普通交流电压供电的定速泵。当系统用水量较小时,可以只用变频器供电的变速泵,当变频器供电的频率达到最大时,表明1台水泵己不能满足系统用水要求,此时需要启动1台定速泵,由1台变速泵与1台定速泵同时工作。当系统用水量减小到使变频器的输出频率低于某一设定值时,此时控制系统就将定速泵停运,只应用变速泵工作。当变频器供电的频率再次达到最大时,又表明1台水泵已不能满足系统用水要求。

此时又需要启动1台定速泵,由1台变速泵与1台定速泵同时工作,循环往复。这种控制方式的优点是结构简单,安装调试方便.但在整个供水过程中由变频器供电的变速水泵总在工作,该水泵一旦出现故障将会影响整个系统的供水。

采用变频恒压供水,如果变频器出现故障,应及时报替,并使整个供水过程中由变频器供电的水泵改又普通交流电压供电,使水泵全速运行。为了应付这种事情的发生,在选用水泵时就应考虑到用水系统管网的承受压力,选用流量扬程曲线平缓型的水泵,使管网能够承受水泵全速运行时的全扬程水压. 当由多台水泵组成恒压供水系统时,对于控制系统也有一定的要求,应选用功能强大的控制器如Pm调节器及用可编程序控制器进行控制。按照先启动先停止,后启动后停止的原则运行,使水泵能循环运行,通过可编程序控制器的编程,使各台水泵的运行概率相同,避免出现某台水泵经常工作,而其他水泵经常停歇,甚至受潮和生锈的情况I32H3slo

3.3.2 调速泵系统构成

从变频恒压供水的原理分析可知,该系统主要有压力传感器、压力变送器、 变频器、恒压控制单元、水泵机组以及低压电器组成.系统主要的设计任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。

(2)通用变频器十单片机(包括变频控制、调节器控制)十人机界面+压力传感器; 通过变频恒压供水系统我们可以看出变频调速恒压供水系统由执行机构信 号检测、控制系统、人机界面、通讯接口以及报警装置等部分组成。如图3.1.

3.1供水泵系统组成

3.4 变频器

变频器是一种改变交流频率的仪器。变频器的电控设备它是由一组接触器、保护继电器、转换开关等电气元件组成.用于在供水控制器的控制下完成对水泵的切换、手/自动切换及就地集中等工作。 3.4.1 变频器输入输出接口

(1)有供水基板的变频器+水泵机组+压力传感器 (2)通用变频器十单片机 (3)通用变频器+PLC 3.4.2 变频器外围设备的选择及保养

在停机过程中,同样可以通过对降速时间的预置来延长停机过程,使动态转 矩大为减小,从而彻底消除了水锤效应。

此外,由于水泵平均转速下降、工作过程中平均转矩减小的原因是 (1)叶片承受的应力大为减小。 (2)轴承的磨损也大为减小。

(3)克服电动机的惯性而使系统急剧地停止。

3.5 变频调速恒压供水系统的特点

这种控制系统结构简单,它将Pm调节器和P比 可编程控制器等硬件集成在变频器供水基板上,通过设置指令代码实现PLC 和PID等电控系统的功能。它虽然简化了电路结构,降低了设备成本,但在压力设定和压力反馈值的显示方面比较麻烦,无法自动实现不同时段的不同恒压要求,在调试时,PID调节参数寻优困难,调节范围小,系统的稳态、动态性能不易保证。其输出接口的扩展功能缺乏灵活性,数据通信困难,并且限制了带负载的容量,因此仅适用于要求不高的小容量场合。

(包括变频控制、调节器控制)十人机界面+压力传感器;这种方式控制精度高、控制算法灵活、参数调整方便,具有较高的性能价格比,但开发周期长,程序一旦固化,修改较为麻烦,因此现场调试的灵活性差,同时变频器在运行时,将产生干扰,变频器的功率越大,产生的干扰越大,所以必须采取相应的抗干扰措施来保证系统的可靠性。该系统适用于某一特定领域的小容量的变频恒压供水中。

具有良好的通信接口,可以方便地与其他的系统进行数据交换;通用性强,由于PLC产品的系列化和模块化,用户可灵活组成各种规模和要求不同控制系统。在硬件设计上,只需确定P比 的硬件配置和拍 的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。同时由于P比 的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。因此该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关。

第四章

可编程控制器PLC

4.1 的定义

可编程控制器PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它可以采用可以编程的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术等操作的指令, 并能通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程,PLC 及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于拓展其 功能的原则而设计。

4.2 的发展阶段及发展方向

全世界几乎80%以上不同品牌的PLC是不能通用的。一个品牌就要使用对应的编程器。有多少种品牌的PLC,就要有多少种编程器。(国内现在出了一些国产PLC,是仿制国外一些品牌PLC的,这些是可以使用被仿制品牌的编程器的。)

手提编程器价格昂贵,而且编程使用指令操作(不能用梯形图),可读性不高,非常不方便。

所以,做工程的人大多会使用电脑来对PLC编程。需要说明的是,使用电脑编程还需要有配套的程序下载连线。也是每个品牌都有专门线的(互不通用)。但是这种连线比起手持编程器来说,不知道便宜多少。

任何一款手提电脑都可以用来做PLC编程,前提是 1 支持串行通讯

2 安装相应品牌PLC的编程软件。

4.3

的特点与应用领域

最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。

4.3.1

可编程序控制器的特点 PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。它具有高可靠性、抗干扰能力强、功能强大、灵活,易学易用、体积小,重量轻,价格便宜的特点。

4.3.2

可编程序控制器与继电器控制系统的比较

维修方便,可在现场修改程序;维修方便,最好是插件式;可靠性高于继电器控制柜;体积小于继电器控制柜;可将数据直接送入管理计算机;在成本上可与继电器控制竞赛;输入可以是交流115V;输出为交流115V/2A以上,能直接驱动电磁阀;在扩展时,原有系统只要很小变更;用户程序存储容量至少能扩展到4K字节。

4.3.3

可编程序控制器的应用领域

PLC已经广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。例如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

4.3.4

在现代自动控制系统应用中所面临的问题

全世界几乎80%以上不同品牌的PLC是不能通用的。一个品牌就要使用对应的编程器。有多少种品牌的PLC,就要有多少种编程器。(国内现在出了一些国产PLC,是仿制国外一些品牌PLC的,这些是可以使用被仿制品牌的编程器的。)

手提编程器价格昂贵,而且编程使用指令操作(不能用梯形图),可读性不高,非常不方便。

所以,做工程的人大多会使用电脑来对PLC编程。需要说明的是,使用电脑编程还需要有配套的程序下载连线。也是每个品牌都有专门线的(互不通用)。但是这种连线比起手持编程器来说,不知道便宜多少。

4.4

我国常用的性能比较研究

目前我国主要使用和研究用松下,西门子,三菱,欧姆龙,台达,富士等。各个应用PLC的厂家都会保护自己的程序不被别人抄写,和设备厂家为了能控制使用和回收货款.在程序内设定一些参数进行控制。各厂家都有各自的加密方式:三菱PLC的解密最简单,其中以西门子S7-200CN的加密最复杂,只有拆机从芯片破解。

4.4.1

的一般结构

从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。

CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。

CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

I/O模块

PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

常用的I/O分类如下:

开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。

按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

电源模块

PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。

底板或机架

大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。

PLC系统的其它设备

编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。

人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。

PLC的通信联网

依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显著,甚至有人提出"网络就是控制器"的观点说法。

PLC具有通信联网的功能,它使PLC与PLC 之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS 或工业以太网进行联网。

4.4.2

基本工作原理

最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。它采用可以编制的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出, 控制各种类型的机械或生产过程。

4.5

我国常用的性能特点

具有高可靠性、抗干扰能力强、功能强大、灵活,易学易用、体积小,重量轻,价格便宜的特点。

4.5.1

SIMATIC S7系列

SIMATIC S7系列主要有S7—200、S7—300、S7--400 、m7等。

4.5.2

S7-300系列可编程序控制器

S7--300周而复始地执行应用程序,控制一个任务或过程。利用STEP 7--Micro/WIN可以创建一个用户程序并将它下载到S7--300中。STEP 7--Micro/WIN软件中提供了多种工具和特性用于完成和调试应用程序。

4.5.3

控制系统设计内容

 EN/ENO的定义 EN(使能输入)是LAD和FBD中盒的布尔输入。要使盒指令执行,必须使能流到达这个输入。在STL中,指令没有EN输入,但是要想使STL指令执行,堆栈顶部的逻辑值必须是“1”。

ENO(使能输出)是LAD和FBD中盒的布尔输出。如果盒的EN输入有能流并且指令正确执行,则ENO输出会将能流传递给下一元素。如果指令的执行出错,则能流在出错的盒指令处被中断。

在STL中没有使能输出,但是STL指令象相关的有ENO输出的LAD和FBD指令一样,置位一个特殊的ENO位。这个位可以用AND ENO(AENO)指令访问,并且可以产生与盒的ENO位相同的作用。

4.5.4

控制系统设计步骤

1.熟悉被控对象,制定控制方案 分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,确定被控对象对 PLC控制系统的控制要求。

2.确定I/O设备 根据系统的控制要求,确定用户所需的输入(如按钮、行程开关、选择开关等)和输出设备(如接触器、电磁阀、信号指示灯等)由此确定PLC的I/O点数。

3.选择PLC 选择时主要包括PLC机型、容量、I/O模块、电源的选择。

4.分配PLC的I/O地址

根据生产设备现场需要,确定控制按钮,选择开关、接触器、电磁阀、信号指示灯等各种输入输出设备的型号、规格、数量;根据所选的PLC的型号列出输入/输出设备与PLC输入输出端子的对照表,以便绘制PLC外部I/O接线图和编制程序。

5.设计软件及硬件进行PLC程序设计,进行控制柜(台)等硬件的设计及现场施工。由于程序与硬件设计可同时进行,因此,PLC控制系统的设计周期可大大缩短,而对于继电器系统必须先设计出全部的电气控制线路后才能进行施工设计。

6.联机调试 联机调试是指将模拟调试通过的程序进行在线统调。开始时,先不带上输出设备(接触器线圈、信号指示灯等负载)进行调试。利用编程器的监控功能,采分段调试的方法进行。各部分都调试正常后,再带上实际负载运行。如不符合要求,则对硬件和程序作调整。通常只需修改部分程序即可,全部调试完毕后,交付试运行。经过一段时间运行,如果工作正常、程序不需要修改则应将程序固化到EPROM中,以防程序丢失。

7.整理技术文件 包括设计说明书、电气安装图、电气元件明细表及使用说明书等。 4.5.5

控制系统的硬件设计

本系统的硬件结构如图2所示,它由6台水泵、17个远程I/O分站、1个控制柜(包括变频器、PLC、4个16点DI模块、2个16点DO模块、3个8点AI模块、1个8点AO模块和1个以太网模块等)、1套压力传感器、各种保护装置以及供电主回路等构成。其中,PI。C模块和变频器模块是系统的控制核心。

4.6

控制系统的软件设计

根据功能要求, PLC控制系统的软件设计方案主要采用顺序控制继电器指令,软件设计主要包括加速、恒速、减速三段梯形图。其中主程序流程图如图6所示,加速部分流程图如图7所示;恒速部分采用P ID算法,减速部分与加速部分类似。

4.6.1 软件设计概述

网络结构采用环型拓扑型式,总体结构采用三层网络结构模式,分别为调度指挥控制中心以太网、1 000 M工业以太网及接入系统网络。系统由主干千兆光纤工业以太环网、调度指挥控制中心骨干路由网关、工业以太网交换机以及连接用光纤、光配等组成。

4.6.2

软件设计 系统软件设计主要包括上位机监控软件设计和下位机PI。C控制软件设计。上位机与下位机之间通过以太网方式通信,共同完成整个控制系统的现场流程控制和远程监测管理功能。上位机控制系统主要实现远程监测和管理功能,利用组态软件进行组态,通过具体运行工况动态显示、实时数据获取及显示、历史数据存储与打印、故障报警等功能,实现整个系统的集中监测和控制。 由于供水系统是一个惯性较大的系统,不需要过高的响应速度,因而在PI。C程序的设计思想上查询方式为主,中断方式为辅。其具体程序流程如图3所示。 核心技术

该恒压系统采用PID控制,具体结构如图4所示。其流程如下所述:当系统开始工作时,首先接通变频器,然后通过接触器把水泵电机接入变频输出电路,实现电机软启动;同时,安装在供水管网出水I:1的压力传感器将水压转换为4~20 mA的电信号,PLC根据给定值与测量值的偏差大小,按照

PID控制器的控制策略选择原则,在压力允许范围内,由变频器调整电机转速达到调节压力的目的。在超出压力允许的范围内,通过结构调整,再结合变频达到调节压力的目的。

当用户用水量增加时,使得水管压力下降,此时PLC输出相应控制信号,使变频器带动水泵电机升速,直至变频器输出至工频,把更多的水送往出水管网。电机由变频到工频的转换时间应尽可能短。而电机脱离变频后,在水压的作用下,电机转速下降很快,转换时间过长,会导致电机启动电流增加。因此,应在电路设计与软件设计中,考虑变频与工频接触器的互锁。 通常,PID连续控制算法表达式为

具体到本例中,K。一0.18,K.=o.08,Kd=1,压强设定值为0.32 MPa,则其控制效果曲线如图5所示。

此外,根据日用水量变化情况,用水高峰集中在早、中、晚3个时段,而在深夜用水量处于低谷。因此,如果改变不同时段的压力给定值,就能更进一步地起到节能的作用。

4.6.3

程序设计的常用方法

主干网络的布置以调度室和水厂的交换机为核心,其它子系统交换机为系统以后的改造、信号的上传预留接口,所有交换机形成环网,并通过光纤彼此相连,从而使得各个子系统的信号可以汇总传送到调度室交换机上,系统网络平台结构如图1所示。

图1

4.6.4 程序设计步骤

初始化程序: LD SM0.0 // 开机始终为ON MOVB

16#9,SMB30

file://自由口通信,选择9600波特,8位数据位,无校验 MOVB

16#2, VB0 file://预设PLC地址 MOVD

&VB1000, VD20

file://设置接收缓冲区,将其首地址传给指针VD20 MOVD

&VB1200, VD30

file://设置发送缓冲区,将首地址传给VD30 MOVD

VD20, VD24 file://指针值保存 MOVD

VD30, VD34 MOVB

8, SMB34

file://设置8ms的定时器0时基中断

ATCH

0,8

file://接收字符连接到中断0,连接静止线定时器和接收器 ATCH

1,10 file://定时中断0,连接到中断1 ENI

file://开中断

为了保证通讯接收的可靠性,程序采用前导符,PLC地址,静止线接收,结束字符。首字符的确认可通过设置前导符来完成,并且通过比较还可以剔除部分干扰字符。首字符确认: Network 1

file://判断前导符 LD

SM0.0 AB<>

SMB2, 16#40

file://不是前导符则跳出中断 RETI Network 2

file://终止定时中断 LD

SM0.0 DTCH

file://断开时基中断 Network 3

file://是前导符则连接中断3 LD

SM0.0 AB=

SMB2, 16#40 ATCH

3, 8 静止线是通讯过程中的一个检测用时间,即设定的数据传输过程中无任何数据的任意2点的间隔时间。静止线的设计和处理包括长度的确定及定时器和接收器的设计。 INT_

// 静止线定时器 LD

SM0.0 ATCH 1, 10

file://静止线定时器采用8ms的时基中断。 INT_1

// 静止线接收器 LD

SM0.0 ATCH 2, 8 file://开始接收字符 尾字符的确认和校验处理: Network 1 // 接收及计算校验码 LDN M0.0 LDB<>

SMB2, 16#2A

// 判断是否为第一个结束符 MOVB

SMB2,*VD24

file://不是则保存数据并计算异或值 XORW

SMW1, AC0 INCD

VD24 INCD

VB40 Network 2

file://如果是第一个结束符,则对M0.0置位,并跳出中断, file://接收下一个字符,看是否为第二个结束符 LDN

M0.0 AB=

SMB2,16#2A S M0.0, 1 MOVB

SMB2, AC1 RETI Network3 LD M0.0 AB<> SMB2, 16#0A

file://判断第二个结束符,如不是则继续执行

AB<> SMB2,16#2A

file://判断又是第一个结束符?不是则执行保存数据, file://异或运算,并对M0.0复位。 XORW

AC1, AC0 MOVB

VB300, *VD24 INCD

VD24 MOVB

SMB2, *VD24 XORW

SMW1, AC0 INCD

VD24 INCD

VB40 INCD

VB40 R M0.0, 1 RETI Network 4

file://如果又是第一个结束符,则上一个是有用的数据,需要保存 LD M0.0 AB= SMB2, 16#2A XORW AC1, AC0 MOVB VB1300, *VD24 INCD VD24 MOVB SMB2, AC1 RETI Network 5

file://如前一个为2A,现在接收到0A,则接收完毕,启动延时中断 LD

M0.0 AB= SMB2, 16#0A DTCH

8

file://断开接收状态,准备组织发送 MOVB

20, SMB34 ATCH

5, 10

第5章 PLC控制系统的设计

5.1 概述

与传统的继电器-接触器控制系统相比,PLC控制系统具有更好的稳定性,控制柔性,维修方便性,随着PLC的普及和推广,其应用领域越来越广泛。特别是在许多新建项目和设备的技术改造中,常常采用PLC作为控制装置。

5.2 输入输出分配

PLC输入端子板是将机床外部开关的端子连接转换成I/O模块所需的针形插座连接,从而使外部控制信号输入至PLC中。同样,PLC输出端子板是将PLC的输出信号经针形插座转换外部执行原件的端子连接。

5.2.1 输入口

其输入口I模块组的的输入元件组成是由;控制按钮、行程开关、接近开关、压力开关、玩控开关组成。输入又分为如图5-15;

5.2.2 输出口

其输入口O模块组的的输入元件组成是由;接触器、继电器、来组成的。而输出方式又分为如图;

5.2.3 辅助触点

主要用于二次回路中,容量小,分常开触电和常闭触电两种,主要用于控制、测量、仪表、信号、保护等回路。我们在进行操作时,就是利用小小的辅助触电去接通和断开主触点去接通和断开主触点的线圈,从而控制主回路。

5.3 控制系统功能介绍

1 最大限度的满足被控对象的控制要求。

2 在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。

3 保证控制系统安全可靠。

4 考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。

5.4 恒压供水系统的流程图

5.5 控制系统的可靠性及应用程序设计

该系统逻辑控制采用PLC控制变频器实现恒压调速供水,使用方便,工作可靠,系统压力恒定,具有较好的控制效果。

5.5.1 程序的优化设计

增加主泵是将当前主泵由变频转工频,同时变频起动一台新水泵的切换过程。当变频器输出上限频率,水压达到压力下限时, PLC 给出控制信号,PLC 的Y0 失电,变频器的FWD端子对CM 短接,变频器的自由制动停车,切断变频器输出,延时500ms 后,将主水泵与变频器断开,延时300ms(防止变频器输出对工频短路),将其转为工频恒速运行,再延时200~300ms PLC 的Y0 得电,变频器以起始频率启动一台新的主水泵。这段程序设计时要充分考虑动作的先后关系及互锁保护。

5.5.2 应用程序的设计

在系统开始工作的时候,先要对整个系统进行初始化,即在开始启动的时 候,先对系统的各个部分的当前工作状态进行检测,如出错则报警,接着对模拟量(管网压力、液位等)数据处理的数据表进行初始化处理,赋予一定的初值。

5.5.3 故障检测程序的设计

对水位过低、水压上下限报警、变频器故障等故障给出报警,并做出相应的故障处理。

(1) 欠水位故障:进入P0 处理模块,停止全部的电机运行,防止水泵空转。当欠水位信号解除后,延时一段时间,自动执行以下程序。

(2) 压力上下限报警:输出报警信号,报警信号30s 内未解除,则进入P0 处理模块,停止全部的电机运行。信号解除则自动运行以下程序。

(3) 变频器故障:变频器出现故障时,对应PLC 输入继电器X5 动作,系统自动转入自动工频运行模块。此时变频器退出运行,三台主泵电机均工作于工频状态。该方式下的水泵的投入和切除顺序和自动变频恒压运行方式时的大致相同,只是原来运行在变频状态下的电机改为了工频运行。由于没有了变频器的调速和PID 调节,水压无法恒定。为防止出现停开一台水泵水压不足而增开一台水泵又超压造成系统的频繁切换,通过增加延时的方法来解决。设定延时时间为20 分钟。

第6章 系统调试

6.1 变频器关键参数的设定

运用变频器加减速时间—加速时间就是输出频率从0上升到最大频率所需时间,减速时间是从最大频率下降到0所需时间。通常频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求;将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是;防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。减速时间设定要点是;防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先预定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳的加减速时间。

6.2 PLC的变频调速恒压供水系统调试

(1)对五台供水系统进行PLC自动控制改造,实现供水的远程控制和生产设备的集中控制。

(2)在改造原有系统的基础上,将供水系统电机的直接启动控制方式改为变频控制,减小对系统电网的冲击和节约能源。

(3)制定具体实施的控制方式、设备启停步骤、软件功能、通讯方式、功能扩充、报警系统(故障诊断、显示、排除)。

(4)采用相应的控制算法,实现供气的恒定,提高供气质量和效率,保证供水系统的安全供水。

(二)系统控制功能要求如下:

(1)实现调度指挥操作生产自动化;

(2)实现设备顺序控制,减少供水起、停时间,并对各设备的运行状态进行自动检测,实现设备的故障自动诊断和保护,从而提高生产效率; (3)实现供水组的自动控制,这主要包括:单台供水系统的自动启停,电机组的顺序启停控制,空压机组的集中控制和保护,提高生产效率;

(4)增强软、硬件功能,保证整个系统的安全性和可靠性,并具有一定的先进性和代表性。

(三)集控系统要求如下:

1、 集控系统的基本功能

1) 系统的控制方式

为方便灵活地对所有设备进行控制,主要工艺流程设备的运行采用五种控制方式:

远程自动控制:由集控室开启设备起、关闭命令,实现现场相关设备的按流程变频恒压供水控制;

远程单遥控:由集控室发出单台设备起、关闭命令,实现设备之间单个切换运行,用于特殊设备的单个起、关闭控制;

紧急关闭:当现场或集控室出现故障,需要立即对分系统停车关闭时,由程序或现场实现紧急停车控制,在现场操作与在集控室操作PLC的执行是等价的。需在集控室进行复位后才能重新开启。

2)集控系统的顺序启、停控制步骤

开启前的操作

a、控制方式选择:集控方式下,PLC执行用户程序的全部控制功能。单个方式下,PLC仅执行模拟显示功能。

b、流程选择:当选定自动控制流程后,PLC将检测有关输入状态,判断参与该流程控制的恒压供水系统,设备工作方式,以及保护点状态等是否满足开启条件,若条件具备,则先发出信号“系统准备开启”。否则将对所检测出的故障点,作出多方位报警。

c、远动设备:对不需参予时序起动,或难以进入顺序开启过程的设备,可以在开启前按闭锁关系远动控制起动该设备。 开启过程控制

a、当前述指令操作完毕,系统准备就绪,发出开启指令,所选PLC变频恒压供水系统在指定的开启方式下进入供水控制过程。

b、在供水过程中出现故障时,供水指令自动撤除并报警,已起设备保持运行,在短时间排除故障后,可从故障设备继续起车;否则可全部停车。 c、对供水过程的时间累计并显示。

系统运行的闭锁控制

a、在运行过程中出现故障时,系统闭锁保护、报警。 b、对系统有效工作时间自动统计,显示。 c、对各种保护、运行参数实时检测。

供水过程控制

a、当系统对任一流程供水停车指令后,PLC将按用户程序完成停车功能控制。 b、对供水过程累计时间及总停车时间显示。

3)故障报警系统

a.当设备发生故障或运行条件不满足时,能根据闭琐关系控制设备供水,并在监控操作站上显示故障原因。 b.报警方式:现场使用电笛报警、集控室内使用语音报警,并能够即时显示报警清单。如图;

结束语

传统恒压控制系统的供水管网能耗大、设备损耗快、对电网要求高,随着变频技术的发展与应用及PLC技术的应用普及,PLC控制的变频调速恒压供水系统已成为供水系统网络应用的主流,恒压供水系统解决了传统高压供水系统与水塔式供水系统的不足。

采用变频调速和可编程控制器控制的恒压供水系统可以根据根据系统设定压力自动调整水泵电机转速,从而调节水泵流量,利用其控制系统可以优化泵组的调速运行,自动调整供水水泵的台数,完成供水系统的自动控制。 致谢;

感谢老师对我们的指导以及对变频恒压供水系统是现代建筑中普遍采用的一种水处理系统的了解和认识。随着变频调速技术的发展和人们节能意识的不断增强,变频恒压供水系统的节能特性使得其越来越广泛用于工厂、住宅、高层建筑的生活及消防供水系统。恒压供水是指用户端在任何时候,不管用水量的大小,总能保持网管中水压的基本恒定。变频恒压供水系统利用PLC、传感器、变频器及水泵机组组成闭环控制系统,使管网压力保持恒定,代替了传统的水塔供水控制方案,具有自动化程度高,高效节能的优点,在高速科技发展的今天使得小区供水和工厂供水控制中得到广泛应用,并取得了明显的经济效益。

此致

敬礼

参考文献··········································

《变频调速技术与应用》

编著丁斗章

机械工业出版社

《变频器调速系统设计与应用》

编著 王树

机械工业出版社

《典型自动化设备及生产线应用与维护》

编著鲍风雨

机械工业出版社 《可编程控制器原理于应用》

编著 史增芳

中国林业出版社

上一篇
下一篇
返回顶部