范文网 论文资料 平行线的判定知识讲解(全文)

平行线的判定知识讲解(全文)

平行线的判定知识讲解第一篇:平行线的判定知识讲解平行线及其判定(提高)知识讲解让更多的孩子得到更好的教育平行线及其判定(提高)知识讲解撰稿:孙景艳 审稿: 赵炜【学习目标】1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线。

平行线的判定知识讲解

第一篇:平行线的判定知识讲解

平行线及其判定(提高)知识讲解

让更多的孩子得到更好的教育

平行线及其判定(提高)知识讲解

撰稿:孙景艳 审稿: 赵炜

【学习目标】

1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系; 2.掌握平行公理及其推论;

3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】

要点

一、平行线的定义及画法

1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b. 要点诠释:

(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;

(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.

(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系. 2.平行线的画法:

用直尺和三角板作平行线的步骤:

①落:用三角板的一条直角边与已知直线重合. ②靠:用直尺紧靠三角板另一条直角边. ③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点. ④画:沿着这条直角边画一条直线,所画直线与已知直线平行. 要点

二、平行公理及推论

1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释:

(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 要点

三、直线平行的判定

地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687 第1页 共5页

让更多的孩子得到更好的教育

判定方法1:同位角相等,两直线平行.如上图,几何语言: ∵ ∠3=∠2 ∴ AB∥CD(同位角相等,两直线平行)

判定方法2:内错角相等,两直线平行.如上图,几何语言: ∵ ∠1=∠2 ∴ AB∥CD(内错角相等,两直线平行)

判定方法3:同旁内角互补,两直线平行.如上图,几何语言: ∵ ∠4+∠2=180°

∴ AB∥CD(同旁内角互补,两直线平行)

要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形. 【典型例题】

类型

一、平行线的定义及表示

1.下列说法正确的是 (

)

A.不相交的两条线段是平行线. B.不相交的两条直线是平行线. C.不相交的两条射线是平行线.

D.在同一平面内,不相交的两条直线叫做平行线. 【答案】D

【解析】平行线定义中三个关键词语:“同一平面内”,“不相交”,“两条直线”. 【总结升华】本例属于对概念的考查,应从平行线的概念入手进行判断. 类型

二、平行公理及推论

2.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。其中正确的个数为:( ) A.1个

B.2个

C.3个

D.4个 【答案】B

【解析】正确的是:(1)(3).

【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别. 举一反三:

【变式】下列说法正确的个数是 (

)

(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d. (2)两条直线被第三条直线所截,同旁内角的平分线互相垂直. 地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687 第2页 共5页

让更多的孩子得到更好的教育

(3)两条直线被第三条直线所截,同位角相等. (4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行. A.1个

B .2个

C.3个

D.4个 【答案】B

类型

三、两直线平行的判定

3. 如图,给出下列四个条件:(1)AC=BD; (2)∠DAC=∠BCA; (3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有

(

). A.(1)(2)

B.(3)(4)

C.(2)(4)

D.(1)(3)(4)

【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件. 【答案】C

【解析】从分解图形入手,即寻找AD、BC的截线.

【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止. 举一反三:

【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是(

)

A.第一次向左拐30°,第二次向右拐30°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130°

D.第一次向左拐50°,第二次向左拐130° 【答案】A 提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.

图B显然不同向,因为路线不平行.

图C中,∠1=180°-130°=50°,路线平行但不同向.

图D中,∠1=180°-130°=50°,路线平行但不同向.

只有图A路线平行且同向,故应选A.

4. 如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.

地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687 第3页 共5页

让更多的孩子得到更好的教育

【思路点拨】利用辅助线把AB、EF联系起来.

【答案与解析】

解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.

∠B=25°,∠E=10°(已知),

∠B=∠BCM,∠E=∠EDN(等量代换).

AB∥CM,EF∥DN(内错角相等,两直线平行).

又∵

∠BCD=45°,∠CDE=30°(已知),

∠DCM=20°,∠CDN=20°(等式性质).

∠DCM=∠CDN(等量代换).

CM∥DN(内错角相等,两直线平行).

AB∥CM,EF∥DN(已证),

AB∥EF(平行线的传递性).

解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.

∠BCD=45°,∴

∠NCB=135°.

∠B=25°,

∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).

又∵

∠CDE=30°,∴

∠EDM=150°.

又∵

∠E=10°,

∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).

∠CNB=∠EMD(等量代换).

所以AB∥EF(内错角相等,两直线平行). 【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.

举一反三:

【高清课堂:平行线及判定403102经典例题2 】【变式1】已知,如图,BE平分ABD,DE平分CDB,且1与2互余,试判断直线AB、CD的位置关系,请说明理由.

地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687 第4页 共5页

让更多的孩子得到更好的教育

【答案】

解:AB∥CD,理由如下:

BE平分∠ABD,DE平分∠CDB,

∠ABD=2∠1,∠CDB=2∠2.

又∵

∠1+∠2=90°,

∠ABD+∠CDB=180°.

AB∥CD(同旁内角互补,两直线平行).

【高清课堂:平行线及判定403102 经典例题4 】

【变式2】已知,如图,ABBD于B,CDBD于D,1+2=180°,求证:CD//EF.

【答案】

证明:∵ABBD于B,CDBD于D, ∴AB∥CD.

又∵1+2=180°, ∴AB∥EF. ∴CD//EF.

地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687 第5页 共5页

第二篇:平行线的判定例题与讲解

3 平行线的判定

1.平行线的判定公理

(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行. 如图,推理符号表示为:

∵∠1=∠2, ∴AB∥CD

.谈重点同位角相等,两直线平行

①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.

(2)平行公理的推论:

①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;

②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.

【例1】 工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?

解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.

答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两

直线平行.

2.平行线的判定定理

(1)判定定理

1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单记为:同旁内角互补,两直线平行.

符号表示:如下图,∵∠2+∠3=180°,

∴AB∥CD

.

谈重点同旁内角互补,两直线平行

①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内

角,使哪两条直线平行.

(2)判定定理2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简单记为:内错角相等,两直线平行.

符号表示:如上图,

∵∠2=∠4,∴AB∥CD.

【例2-1】 如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.

解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个

最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.

答案:内错角相等

【例2-2】 如图,下列说法中,正确的是().

A.因为∠A+∠D=180°,所以AD∥BC

B.因为∠C+∠D=180°,所以AB∥CD

C.因为∠A+∠D=180°,所以AB∥CD

3.平行线的判断方法

平行线的判定方法主要有以下六种:

(1)平行线的定义(一般很少用).

(2)同位角相等,两直线平行.

(3)同旁内角互补,两直线平行.

(4)内错角相等,两直线平行.

(5)同一平面内,垂直于同一条直线的两条直线相互平行.

(6)如果两条直线都和第三条直线平行,那么这两条直线平行.

析规律如何选择判定两直线平行的方法

①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;

②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.

【例3】 如图,直线a,b与直线c相交,形成∠1,∠2,„,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.

解析:本题主要是考查平行线的三种判定方法.

若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;

若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个; 若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;

从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.

答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°„

4.平行线判定的应用

(1)平行线的生活应用

数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求„„

对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.

(2)平行线在数学中的运用 平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.

释疑点判定平行的关键 判定两直线平行,关键是确定角的位置关系及大小关系.

【例4-1】 如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).

解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,

∠BCD=60°,

∴∠ABC+∠BCD=120°+60°=180°.

∴AB∥CD.

∴这个零件合格.

答案:合格

【例4-2】 已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.

分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.

解:AD与BC的位置关系是平行.

理由:∵四边形ABCD的内角和是360°,

∴∠A+∠B+∠C+∠D=360°.

∵∠A=∠D,∠B=∠C,

∴∠A+∠B=180°.

∴AD∥BC(同旁内角互补,两直线平行).

点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.

第三篇:平行线的判定

平行线的判定练习精编

一.选择题(共30小题) 1.若∠1与∠2是同旁内角,∠1=30°,则(

)

A.∠2=150° B.∠2=30° C.∠2=150°或30° D.∠2的大小不能确定

2.下列说法中可能错误的是(

)

A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点 D.若两条直线相交成直角,则这两条直线互相垂直

3.下面各语句中,正确的是(

)

A.两条直线被第三条直线所截,同位角相等 B.垂直于同一条直线的两条直线平行 C.若a∥b,c∥d,则a∥d D.同旁内角互补,两直线平行

4.(2005•哈尔滨)下列命题中,正确的是(

)

A.任何数的平方都是正数 B.相等的角是对顶角 C.内错角相等 D.直角都相等

5.如图,下列说法中,正确的是(

)

A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD

6.如图,要得到a∥b,则需要条件(

)

A.∠2=∠4 C.∠1+∠2=180°

7.根据图,下列推理判断错误的是(

) B.∠1+∠3=180°

D.∠2=∠3

A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d C.因为∠1=∠3,所以c∥d D.因为∠2=∠3,所以a∥b 8.如图所示,下列条件中,能判断直线l1∥l2的是(

)

A.∠2=∠3 B.∠1=∠3 C.∠4+∠5=180° D.∠2=∠4

9.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是(

)

A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°

10.下列说法正确的是(

)

A.同位角相等 B.在同一平面内,如果a⊥b,b⊥c,则a⊥c 果a∥b,b∥c,则a∥c

11.下列四幅图中,∠1和∠2是同位角的是(

)

C.相等的角是对顶角 D.在同一平面内,如

A.(1)、(2) B.(3)、(4) C.(1)、(2)、(3) D.(2)、(3)、(4)

12.∠1与∠2是内错角,∠1=40°,则(

)

A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定

13.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是(

)

A.相交 B.平行 C.垂直 D.不确定

14.(2009•桂林)如图,在所标识的角中,同位角是(

)

A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3

15.如图,在下列结论给出的条件中,不能判定AB∥DF的是(

)

A.∠2+∠A=180° B.∠A=∠3 C.∠1=∠4 D.∠1=∠A

16.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是(

)

A.同位角 B.内错角 C.对顶角 D.同旁内角

17.下图中,∠1和∠2是同位角的是(

)

A. B. C. D.

18.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有(

)

A.1个 B.2个 C.3个 D.4个

19.在同一平面内,两条直线可能的位置关系是(

)

A.平行 B.相交 C.平行或相交 D.平行、相交或垂直

20.下列所示的四个图形中,∠1和∠2是同位角的是(

)

A.②③ B.①②③ C.①②④ D.①④

21.如图,下列条件中,能判定DE∥AC的是(

)

22.给出下列说法:

A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4

D.∠1=∠2

(1)两条直线被第三条直线所截,同位角相等;

(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;

(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中正确的有(

)

A.0个 B.1个 C.2个 D.3个

23.(2007•绍兴)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有(

) ①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.

A.①② B.②③ C.③④ D.①④

24.(2006•梧州)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是(

)

A.2个 B.3个 C.4个 D.5个

25.(2005•潍坊)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的(

)

A.∠1=∠2

26.如图,不能作为判断AB∥CD的条件是(

)

B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE

A.∠FEB=∠ECD B.∠AEC=∠ECD C.∠BEC+∠ECD=180° D.∠AEG=∠DCH 27.(2008•十堰)如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是(

)

A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠5 28.(2003•河北)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是(

)

A.第一次左拐30°,第二次右拐30° B.第一次右拐50°,第二次左拐130° C.第一次右拐50°,第二次右拐130° D.第一次向左拐50°,第二次向左拐120°

29.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(

)

A.a∥d B.b⊥d C.a⊥d D.b∥c

30.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是(

)

A.∠1=∠2 B.∠3=∠4

C.∠5=∠B

D.∠B+∠BDC=180°

答案与评分标准

一.选择题(共30小题) 1.若∠1与∠2是同旁内角,∠1=30°,则(

)

A.∠2=150° B.∠2=30° C.∠2=150°或30° D.∠2的大小不能确定 考点:同位角、内错角、同旁内角。

分析:两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系.

解答:解:同旁内角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,同旁内角才互补. 故选D.

点评:特别注意,同旁内角互补的条件是两直线平行.

2.下列说法中可能错误的是(

)

A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点 D.若两条直线相交成直角,则这两条直线互相垂直 考点:平行公理及推论;相交线;垂线。

分析:根据平行公理和相交线、垂线的定义利用排除法求解.

解答:解:A、应为过直线外一点有且只有一条直线与已知直线平行,错误; B、过一点有且只有一条直线与已知直线垂直,正确; C、两条直线相交,有且只有一个交点,正确;

D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,正确. 故选A.

点评:本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.

3.下面各语句中,正确的是(

)

A.两条直线被第三条直线所截,同位角相等 B.垂直于同一条直线的两条直线平行 C.若a∥b,c∥d,则a∥d D.同旁内角互补,两直线平行 考点:平行线的判定。

分析:根据相关的定义或定理判断.

解答:解:A、应强调两直线平行,被第三条直线所截,才能同位角相等; B、应强调在同一平面内,垂直于同一条直线的两条直线平行; C、应为a∥b,b∥c,c∥d,则a∥d; 只有D正确. 故选D.

点评:叙述命题时要注意所学定理叙述的完整性,注意定理成立的条件.

4.(2005•哈尔滨)下列命题中,正确的是(

)

A.任何数的平方都是正数 B.相等的角是对顶角 C.内错角相等 D.直角都相等 考点:同位角、内错角、同旁内角;对顶角、邻补角;垂线。

分析:根据平方、对顶角、内错角、直角的定义和性质,对选项一一分析,排除错误答案. 解答:解:A、因为0的平方是0,故错误;

B、对顶角一定相等,但相等的角不一定是对顶角,故错误; C、只有两直线平行,内错角才相等,故错误; D、直角都是90°的角,所以都相等,故正确. 故选D.

点评:解答此题的关键是对考点知识熟练掌握和运用.

5.如图,下列说法中,正确的是(

)

A.因为∠A+∠D=180°,所以AD∥BC B.因为∠C+∠D=180°,所以AB∥CD C.因为∠A+∠D=180°,所以AB∥CD D.因为∠A+∠C=180°,所以AB∥CD 考点:平行线的判定。

分析:A、B、C、根据同旁内角互补,判定两直线平行;D、∠A与∠C不能构成三线八角,因而无法判定两直线平行.

解答:解:A、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,错误; B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,错误; C、正确; D、∠A与∠C不能构成三线八角,无法判定两直线平行,错误. 故选C.

点评:平行线的判定:

同位角相等,两直线平行. 内错角相等,两直线平行. 同旁内角互补,两直线平行.

6.如图,要得到a∥b,则需要条件(

)

A.∠2=∠4 B.∠1+∠3=180° C.∠1+∠2=180° D.∠2=∠3 考点:平行线的判定。

分析:在复杂的图形中具有相等关系的两角要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 解答:解:A、∵∠2=∠4, ∴c∥d(同位角相等,两直线平行); B、∵∠1+∠3=180°, c∥d(同旁内角互补,两直线平行); C、∵∠1+∠2=180°, ∴a∥b(同旁内角互补,两直线平行); D、∠2与∠3不能构成三线八角,无法判定两直线平行. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

7.根据图,下列推理判断错误的是(

)

A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d C.因为∠1=∠3,所以c∥d D.因为∠2=∠3,所以a∥b 考点:平行线的判定。

分析:根据平行线的判定定理进行解答. 解答:解:A、正确,因为∠1=∠2,由内错角相等,两直线平行,所以c∥d; B、正确,因为∠3=∠4,由同位角相等,两直线平行,所以c∥d; C、三不符合平行线的判定条件,所以无法确定两直线平行. D、正确,因为∠2=∠3,由同位角相等,两直线平行,所以a∥b. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

8.如图所示,下列条件中,能判断直线l1∥l2的是(

)

A.∠2=∠3 B.∠1=∠3 C.∠4+∠5=180° D.∠2=∠4 考点:平行线的判定。

分析:要证明两直线平行,则要找到同位角、内错角相等,同旁内角互补等. 解答:解:A、∠2和∠3不是直线l

1、l2被第三条直线所截形成的角,故不能判断直线l1∥l2. B、∵∠1=∠3,∴l1∥l2(同位角相等两直线平行). C、∠

4、∠5是直线l

1、l2被第三条直线所截形成的同位角,故∠4+∠5=180°不能判断直线l1∥l2. D、∠

2、∠4是直线l

1、l2被第三条直线所截形成的同旁内角,故∠2=∠4不能判断直线l1∥l2. 故选B.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.

9.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是(

)

A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180° 考点:平行线的判定。

分析:根据平行线的判定定理进行逐一分析解答即可.

解答:解:A、正确,符合内错角相等,两条直线平行的判定定理; B、正确,符合同位角相等,两条直线平行的判定定理; C、错误,若∠3=∠4,则AD∥BE;

D、正确,符合同旁内角互补,两条直线平行的判定定理; 故选C.

点评:本题考查的是平行线的判定定理,比较简单.

10.下列说法正确的是(

)

A.同位角相等 B.在同一平面内,如果a⊥b,b⊥c,则a⊥c C.相等的角是对顶角 D.在同一平面内,如果a∥b,b∥c,则a∥c 考点:平行公理及推论;对顶角、邻补角;平行线的判定。 分析:根据平行线的性质和判定以及对顶角的定义进行判断.

解答:解:A、只有在两直线平行这一前提下,同位角才相等,故错误; B、在同一平面内,如果a⊥b,b⊥c,则a∥c,所以B错误;

C、相等的角不一定是对顶角,因为对顶角还有位置限制,所以C错误; D、由平行公理的推论知,D正确. 故选D.

点评:本题考查了平行线的性质、判定,对顶角的性质,注意对顶角一定相等,但相等的角不一定是对顶角.

11.下列四幅图中,∠1和∠2是同位角的是(

)

A.(1)、(2) B.(3)、(4) C.(1)、(2)、(3) D.(2)、(3)、(4) 考点:同位角、内错角、同旁内角。

分析:互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角. 解答:解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角; 图(3)∠

1、∠2的两边都不在同一条直线上,不是同位角; 图(4)∠

1、∠2不在被截线同侧,不是同位角. 故选A.

点评:本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.

12.∠1与∠2是内错角,∠1=40°,则(

)

A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定 考点:同位角、内错角、同旁内角。

分析:两直线平行时内错角相等,不平行时无法确定内错角的大小关系.

解答:解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等. 故选D.

点评:特别注意,内错角相等的条件是两直线平行.

13.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是(

)

A.相交 B.平行 C.垂直 D.不确定 考点:平行公理及推论。

分析:根据如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 解答:解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.

点评:本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.

14.(2009•桂林)如图,在所标识的角中,同位角是(

)

A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3 考点:同位角、内错角、同旁内角。

分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 解答:解:根据同位角、邻补角、对顶角的定义进行判断, A、∠1和∠2是邻补角,错误; B、∠1和∠3是邻补角,错误; C、∠1和∠4是同位角,正确; D、∠2和∠3是对顶角,错误.故选C.

点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.

15.如图,在下列结论给出的条件中,不能判定AB∥DF的是(

)

A.∠2+∠A=180° B.∠A=∠3 C.∠1=∠4 D.∠1=∠A 考点:平行线的判定。

分析:利用平行线的判定定理,逐一判断. 解答:解:A、∵∠2+∠A=180,∴AB∥DF(同旁内角互补,两直线平行); B、∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行); C、∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行). 故选D.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

16.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是(

)

A.同位角 B.内错角 C.对顶角 D.同旁内角 考点:同位角、内错角、同旁内角。

分析:拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角. 解答:解:角在被截线的内部,又在截线的两侧,符合内错角的定义, 故选B.

点评:本题主要考查了内错角的定义.

17.下图中,∠1和∠2是同位角的是(

)

A. B. C. D.

考点:同位角、内错角、同旁内角。

分析:本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断. 解答:解:A、∠

1、∠2的两边都不在同一条直线上,不是同位角; B、∠

1、∠2的两边都不在同一条直线上,不是同位角; C、∠

1、∠2的两边都不在同一条直线上,不是同位角; D、∠

1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角. 故选D.

点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.

18.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有(

)

A.1个 B.2个 C.3个 D.4个 考点:平行线的判定。

分析:根据对顶角的性质和平行线的判定定理,逐一判断. 解答:解:①是正确的,对顶角相等; ②正确,在同一平面内,垂直于同一条直线的两直线平行; ③错误,角平分线分成的两个角相等但不是对顶角; ④错误,同位角只有在两直线平行的情况下才相等. 故①②正确,③④错误,所以错误的有两个, 故选B.

点评:平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.

19.在同一平面内,两条直线可能的位置关系是(

)

A.平行 B.相交 C.平行或相交 D.平行、相交或垂直 考点:平行线;相交线。

分析:在同一平面内,两条直线的位置关系是平行或相交.

解答:解:根据在同一平面内,两条直线的位置关系是平行或相交.可知A、B都不完整,故错误,而D选项中,垂直是相交的一种特殊情况,故选C.

点评:本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.

20.下列所示的四个图形中,∠1和∠2是同位角的是(

)

A.②③ B.①②③ C.①②④ D.①④ 考点:同位角、内错角、同旁内角。

分析:此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求. 解答:解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选C.

点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.

21.如图,下列条件中,能判定DE∥AC的是(

)

A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠2 考点:平行线的判定。

分析:可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断. 解答:解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行; ∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC; ∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC. 故选C.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

22.给出下列说法:

(1)两条直线被第三条直线所截,同位角相等;

(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;

(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中正确的有(

)

A.0个 B.1个 C.2个 D.3个

考点:同位角、内错角、同旁内角;对顶角、邻补角;点到直线的距离。

分析:正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断. 解答:解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误; (2)强调了在平面内,正确; (3)不符合对顶角的定义,错误;

(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度. 故选B.

点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.

23.(2007•绍兴)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有(

) ①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.

A.①② B.②③ C.③④ D.①④

考点:平行线的判定。 专题:操作型。

分析:解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,故过点P所折折痕与虚线垂直. 解答:解:由作图过程可知,∠1=∠2,为内错角相等;∠1=∠4,为同位角相等; 可知小敏画平行线的依据有:③同位角相等,两直线平行;④内错角相等,两直线平行.

故选C.

点评:理解折叠的过程是解决问题的关键.

24.(2006•梧州)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是(

)

A.2个 B.3个 C.4个 D.5个

考点:同位角、内错角、同旁内角;线段的性质:两点之间线段最短。

分析:此题考查的知识点多,用平行线的性质,对顶角性质,补角的定义等来一一验证,从而求解. 解答:解:①忽略了两条直线必须是平行线; ③不应忽略相等的两个角的两条边必须互为反向延长线,才是对顶角; ④举一反例即可证明是错的:80°+60°=170°,170°显然不是锐角,故①③④是错的. ②是公理故正确;⑤根据补角定义如果两个角的和是一个平角,那么这两个角叫互为补角, 其中一个角叫做另一个角的补角,同角的补角相等.比如:∠A+∠B=180°,∠A+∠C=180°,则∠C=∠B. 等角的补角相等.比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠C=∠B. ∴②⑤是正确的. 故选A.

点评:此题涉及知识较多,请同学们认真阅读,最好借助图形来解答.

25.(2005•潍坊)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的(

)

A.∠1=∠2 B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE 考点:平行线的判定。 分析:要使DF∥BC,可围绕截线找同位角、内错角和同旁内角,选项中∠1=∠DFE,根据已知条件可得∠1=∠2,所以∠DFE=∠2,满足关于DF,BC的内错角相等,则DF∥BC. 解答:解:∵EF∥AB, ∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠DFE, ∴∠2=∠DFE(等量代换), ∴DF∥BC(内错角相等,两直线平行). 所以只需满足下列条件中的∠1=∠DFE. 故选D.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.

26.如图,不能作为判断AB∥CD的条件是(

)

A.∠FEB=∠ECD B.∠AEC=∠ECD C.∠BEC+∠ECD=180° D.∠AEG=∠DCH 考点:平行线的判定。

分析:利用平行线的判定定理,逐一判断. 解答:解:A、正确,∵∠FEB=∠ECD, ∴AB∥CD(同位角相等,两直线平行). B、正确,∵∠AEC=∠ECD, ∴AB∥CD(内错角相等,两直线平行). C、正确,∵∠BEC+∠ECD=180°, ∴AB∥CD(同旁内角互补,两直线平行). 故选D.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

27.(2008•十堰)如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是(

)

A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠5 考点:平行线的判定。 专题:几何图形问题。

分析:结合图形分析两角的位置关系,根据平行线的判定方法判断. 解答:解:∵∠1=∠2, ∴BC∥AD(内错角相等,两直线平行). 故选C.

点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.

28.(2003•河北)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是(

)

A.第一次左拐30°,第二次右拐30° B.第一次右拐50°,第二次左拐130° C.第一次右拐50°,第二次右拐130° D.第一次向左拐50°,第二次向左拐120° 考点:平行线的判定。 专题:应用题。

分析:两次拐弯后,行驶方向与原来相同,说明两次拐弯后的方向是平行的.对题中的四个选项提供的条件,运用平行线的判定进行判断,能判定两直线平行者即为正确答案. 解答:解:如图所示(实线为行驶路线):

A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定. 故选A.

点评:本题考查平行线的判定,熟记定理是解决问题的关键.

29.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(

)

A.a∥d B.b⊥d C.a⊥d D.b∥c 考点:平行线的判定;垂线。

分析:根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d. 解答:解:∵a⊥b,b⊥c, ∴a∥c, ∵c⊥d, ∴a⊥d.故选C.

点评:此题主要考查了平行线及垂线的性质.

30.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是(

)

A.∠1=∠2 B.∠3=∠4 D.∠B+∠BDC=180° 考点:平行线的判定。

分析:根据平行线的判定方法直接判定. 解答:解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确; 选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确; 选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确; 而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误. 故选A.

点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

C.∠5=∠B

菁优网 版权所有

仅限于学习使用,不得用于任何商业用途

第四篇:平行线的判定

一、教学目标:

知识目标:了解推理、证明的格式.理解平行线判定公理的形成,第一个判定定理的证法.掌握平行线判定公理和第一个判定定理.会用判定公理及第一个判定定理进行简单的推理论证.

能力目标:通过模型演示,即“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——总结”的能力.通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力.通过判定定理的推导,培养学生的逻辑推理能力. 情感态度目标:通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想.

二、教学重点、难点

1、重点在观察实验的基础上进行公理的概括与定理的推导.

2、难点判定定理的形成过程中逻辑推理及书写格式.

第五篇:平行线的判定公理

平行线的判定公理(定理) (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”). (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”). (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”). 2.平行线的性质公理(定理) 如果两条平行线被第三条直线所截,那么 (1)同位角相等(简称“两直线平行,同位角相等”). (2)内错角相等(简称“两直线平行,内错角相等”). (3)同旁内角含有未知数的等式叫方程。 等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。 用字母表示为:若a=b,c为一个数或一个代数式。则:

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析: 1.本题中给出的已知量和未知量各是什么? 2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500, 所以 x=50 000. 答:原来有 50 000千克面粉. 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿. 依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下: (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步); (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义. 编辑本段二元一次方程(组) 人教版7年级数学下册会学到,冀教版7年级数学下册第九章会学到。 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。 二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种: 代入消元法 例:解方程组x+y=5① 6x+13y=89② 解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7 把y=59/7带入③,得x=5-59/7,即x=-24/7 ∴x=-24/7,y=59/7 这种解法就是代入消元法。 加减消元法 例:解方程组x+y=5① x-y=9② 解:①+②,得2x=14,即x=7 把x=7带入①,得7+y=5,解得y=-2 ∴x=7,y=-2 这种解法就是加减消元法。 二元一次方程组的解有三种情况: 1.有一组解 如方程组x+y=5① 6x+13y=89②的解为x=-24/7,y=59/7。 2.有无数组解 如方程组x+y=6① 2x+2y=12②,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3.无解 如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5,这与方程①相矛盾,所以此类方程组无解。 编辑本段三元一次方程 定义:与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程。 三元一次方程组的解法:与二元一次方程类似,利用消元法逐步消元。 典型题析: 某地区为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨按0.9元/吨收费;超过10吨而不超过20吨按1.6元/吨收费;超过20吨的部分按2.4元/吨收费.某月甲用户比乙用户多缴水费16元,乙用户比丙用户多缴水费7.5元.已知丙用户用水不到10吨,乙用户用水超过10吨但不到20吨.问:甲.乙.丙三用户该月各缴水费多少元(按整吨计算收费)? 解:设甲用水x吨,乙用水y吨,丙用水z吨 显然,甲用户用水超过了20吨 故甲缴费:0.9*10+1.6*10+2.4*(x-20)=2.4x-23 乙缴费:0.9*10+1.6*(y-10)=1.6y-7

丙缴费:0.9z

2.4x-23=1.6y-7+16 1.6y-7=0.9z+7.5 化简得 3x-2y=40----(1) 16y-9z=145-------(2) 由(1)得x=(2y+40)/3 所以设y=1+3k,3 编辑本段一元二次方程 人教版9年级数学上册会学到,冀教版9年级数学上册第二十九章会学到。 定义:含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。 由一次方程到二次方程是个质的转变,通常情况下,二次方程无论是在概念上还是解法上都比一次方程要复杂得多。 一般形式:ax^2+bx+c=0 (a≠0) 一般解法有四种: ⒈公式法(直接开平方法) ⒉配方法 ⒊十字相乘法 ⒋因式分解法 (由于精力有限,不举例说明如何解,望有人能帮忙)

1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:将常数项移到方程右边 3x2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。 编辑本段附注 一般地,n元一次方程就是含有n个未知数,且含未知数项次数是1的方程,一次项系数规定不等于0; n元一次方程组就是几个n元一次方程组成的方程组(一元一次方程除外); 一元a次方程就是含有一个未知数,且含未知数项最高次数是a的方程(一元一次方程除外); 一元a次方程组就是几个一元a次方程组成的方程组(一元一次方程除外); n元a次方程就是含有n个未知数,且含未知数项最高次数是a的方程(一元一次方程除外); n元a次方程组就是几个n元a次方程组成的方程组(一元一次方程除外); 方程(组)中,未知数个数大于方程个数的方程(组)叫做不定方程(组),此类方程(组)一般有无数个解。 互补(简称“两直线平行,同旁内角互补”)

上一篇
下一篇
返回顶部