范文网 论文资料 pcb的emc设计课件分享(大全)

pcb的emc设计课件分享(大全)

pcb的emc设计课件分享第一篇:pcb的emc设计课件分享PCB EMC设计指南总结对于静电放电问题的解决方案,可按以下十二条规则来进行(按优先顺序排列):1、 PCB上的非绝缘机壳地线必须与其他走线相距至少2.2毫米。这适用于连接到机壳。

pcb的emc设计课件分享

第一篇:pcb的emc设计课件分享

PCB EMC设计指南总结

对于静电放电问题的解决方案,可按以下十二条规则来进行(按优先顺

序排列):

1、 PCB上的非绝缘机壳地线必须与其他走线相距至少2.2毫米。这适用于连接到机壳地上的所有物体,包括轨线;

2、 机壳地线的长度不应超过其宽度的五倍;

3、 使未绝缘的电路与操作人员可触摸到的PCB区域或未接地的金

属物体相隔至少2厘米以上;

4、 电源线与地线要么并排平行地放在PCB的同一层上,要么放在

相邻的两层;

5、 地平面和地线必须连成网格状。在任意一个方向上,垂直地线与水平地线至少每隔6厘米连接一次。尤其是双面PCB板,也就是说,PCB板的第一层可以布水平的地线,而第二层可布垂直的地线,必须至少每隔6厘米放置一个过孔以将两者相连(当然,在小于6厘米的地方进行连接是更好的,地平面比地线网格要好一些);

6、 所有信号线必须在地线面边缘或地线以内13毫米以上。地线既可以布在与信号线相同的层,也可布在与之

紧挨着的层上。如果信号线的长度达到30厘米或其以上,则必须在其旁边放置一根地线,在信号线上方或其

相邻面上放置地线也是可以的;

7、 电源线与地线之间跨接的旁路电容器,彼此之间的距离不能大于8厘米(这样每片集成块可能会有多个旁路

电容相连);

8、 相互之间连线较多的元件要靠在一起;

9、 所有元件必须尽可能靠近I/O连接器(注意,首先应满足第

3条);

10、将PCB的空余部分全部填以地线(应注意在每隔6厘米的地方

进行连接以产生地线网格);

11、如可能的话,将馈送电源线或信号线从PCB板的边缘中心处引出,而不应从某一个角上引出来。

12、对于特别敏感且较长的信号线(30厘米或更长),应每隔一定

间隔与其地线对调。

注意:这些设计规则必须应用到系统内的所有PCB板上(例如主板及插在上面的板卡)。例如,当应用第2条时,机壳地线长度包括母板

与子板所有地线的长度之和。

第二篇:通信开关电源的EMI/EMC设计

1 引言

通信开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高,另外还有体积小、重量轻、具有远程监控等优点,因此被广泛地应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是电磁干扰(EMD)源,他产生的电磁干扰EMI信号有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。同时,通信开关电源要有很强的抗电磁干扰的能力,特别是对雷击、浪涌、电网电压、电场、磁场、电磁波、静电放电、脉冲串、电压跌落、射频电磁场传导抗扰性、辐射抗扰性、传导发射、辐射发射等项目需要满足有关EMC标准的规定。

2 开关电源引起电磁兼容性的原因

通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的。按耦合通路来分,可分为传导干扰和辐射干扰两种;按照干扰信号对于电路作用的形态不同,可将电源系统内的干扰分为共模干扰和差模干扰两种。通常,线路电源线上的任何传导干扰信号,都

可表示成共模和差模干扰两种方式。

在开关电源中,主功率开关管在高电压、大电流或以高频开关方式工作下,开关电压及开关电流的波形在阻性负载时近似为方波,其中含有丰富的高次谐波分量。由于电压差可以产生电场、电流的流动可以产生磁场,以及丰富的谐波电压电流的高频部分在设备内部产生电磁场,从而造成设备内部工作的不稳定,使设备的性能降低。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器问的分布电容传人内部电路或通过散热器及变压器向空间辐射。

如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰,例如返回噪声、输出噪声和辐射干扰等。进行开关电源EMI/EMC设计时,一方面要防止开关电源对电网和附近的电子设备产生干扰;另一方面要加强开关电源本身对电磁干扰环境的适应能力。下面用等效电路分别介绍共模和差模干扰产生的原因及路径。

如图2所示,当开关管转为“关”时,集电极与发射极间的电压快速上升达500 V,他产生的电流经集电极与地之间的分布电容返回整流桥,这个按开关频率工作的脉冲串电流是共模噪声。这个电压会引起共模电流Icm2向CP2充电和共模电流Icm1向CP1充电,其中CP1为变压器初、次级之间的分布电容,CP2为开关电源与散热器之间的分布电容(即开关管集电极与地之间的分布电容)。则线路中共模电流总大小为Icm1+Icm2。如图3所示,当开关管转为“开”时,储能电容Cs的能量由AC电网和整流桥提供,他被开关管变换器的快速开关频率所变换,并通过变压器形成脉冲电流IL,他具有非常丰富的开关频率谐波。储能电容不是一个纯电容,他有串联电阻和电感。当整流桥处开关管“开”时,在AC电网端,IL会产生一个由电容的L,R,C所呈现的阻抗电压,这就是开关电源产生差模发射源的原理。差模电流Idm和信号电流IL沿着导线、变压器初级、开关管组成的回路流通。

3 开关电源的电磁兼容性设计

电磁兼容性(Electromagnetic Compatibility,EMC)是指在有限的空间、时间和频谱范围内,各种电气设备共存而不引起性能的下降。形成电磁干扰的三要素是干扰源、传播途径和受扰设备,因而,抑制电磁干扰也应该从这3个方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,降低其对噪声的敏感度。目前抑制开关电源EMI的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,常用的方法是屏蔽和滤波,他们的确是行之有效的办法。

3.1 无源补偿滤波技术

滤波是抑制传导干扰的一种很好的办法。在电源输入端接上滤波器,即可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。开关电源的工作频率一般在10~130 kHz,对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就能达到理想的滤波效果。干扰抑制电路如图4所示,CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。电阻R用于消除可能在滤波器中出现的静电积累。IEC-380安全技术条件标准的8.8部分指出,若CX>0.1 μF则R=t/2.2C(t=1 s,C=2CX μF)。由这些集中参数元件构成无源低通网络,抑制开关电源产生的向电网反馈的传导干扰,同时抑制来自电网的噪声对开关电源本身的侵害,为了使通过滤波电容C流入地的漏电流维持在安全范围内,CX=0.1~0.2 μF ,CY的值一般适合取在0.1~0.33μF之间,不宜过大,相应的扼流线圈L应选大些,一般适合取在0.5μH~8 mH之间,这样既符合安全要求,又能抑制电磁干扰。

共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。使滤波器接入电路后,两只线圈内电流产生的磁通在磁环内相互抵消,不会使磁环达到磁饱和状态,从而使两只线圈的电感值保持不变。通常使用环形磁芯,漏磁小,效率高。但是绕线困难,如磁环的材料不可能做到绝对均匀,两个线圈的绕制也不可能完全对称等,使得两个绕组的电感量是不相等的,于是,形成差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个Ⅱ型滤波器。这种滤波器对差模干扰有较好的衰减。除了共模电感以外,图4中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。

使用LC滤波电路,可根据公式计算电路的谐振频率,调整电感、电容,使谐振频率与干扰频率相近或接近干扰频率的中心频率。对频率很高的电磁干扰,可以使用三端电容或穿心电容进行滤波。

3.2 屏蔽技术

屏蔽是抑制开关电源辐射干扰的有效方法。一般分为两类:一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响;另一类是电磁屏蔽,主要用于防止交变电场,交变磁场以及交变电磁场的影响。可以用导电性能良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。实际应用中,主要是应用于隔离变压器。变压器绕组间的交叉耦合电容为共模噪声流过整个系统提供了通路。这一交叉耦合电容可以在变压器结构中采用法拉第屏蔽(Faraday shield)来减小。法拉第屏蔽简单来说就是用铜箔或铝箔包绕在原方和副方绕组之间形成一个静电屏蔽层隔离区并接地,以减小交叉耦合电容。

图5为变压器原边绕组和副边绕组。其中N1A,N1B是原边绕组,分两次绕;N2A,N2B是副边绕组;N3,N4分别是辅助绕组;SCREEN为铜箔屏蔽。安规上一般要求散热器接地,那么开关管漏极与散热器之间的寄生电容就为共模噪声提供了通路,可以在漏极和散热器之间加一铜箔或铝箔并接地以减小此寄生电容。采用磁屏蔽效果比较好的铁氧体磁芯如PQ型或者P型来制作变压器可以很大程度上减小变压器漏磁从而减小原副方绕组漏感,有效抑制了EMI的传播。

4 结 语

随着开关电源不断向高频化发展,其抗干扰问题显得越发重要。在开发和设计开关电源中,如何有效抑制开关电源的电磁干扰,同时提高开关电源本身对电磁干扰的抗干扰能力是一个重要课题。几种抗干扰措施既相互独立又相互联系,必须同时采用多种措施才能达到良好的抗干扰效果。

第三篇:电路板PCB设计的基本步骤

PCB设计技巧

1、Protel软件设计的PCB文件为何在我的电脑里调出来不是全图?

有许多老电子工程师在刚开始用电脑绘制PCB线路图时都遇到过这样的问题,难道是我的电脑内存不够吗? 我的电脑可有64M内存呀!可屏幕上的图形为何还是缺胳膊少腿的呢?不错,就是内存配置有问题,您只需在您的CONFIG.SYS文件(此文件在C:根目录下,若没有,则创建一个)中加上如下几行,存盘退出后 重新启动电脑即可。

DEVICE=C:WINDOWSSETVER.EXE

DEVICE=C:WINDOWSHIMEM.SYS

DEVICE=C:WINDOWSEMM386.EXE 16000

2、何确定大电流导线线宽?请见1989年国防工业出版社出版的《电子工业生产技术手册》Vol12中的图形说明。

3、何要将PCB文件转换为GERBER文件和钻孔数据后交PCB厂制板?

大多数工程师都习惯于将PCB文件设计好后直接送PCB厂加工,而国际上比较流行的做法是将PCB文件转换为GERBER文件和钻孔数据后交PCB厂,为何要“多此一举”呢?

因为电子工程师和PCB工程师对PCB的理解不一样,由PCB工厂转换出来的GERBER文件可能不是您所要的,如您在设计时将元件的参数都定义在PCB文件中,您又不想让这些参数显示在PCB成品上,您未作说明,PCB厂依葫芦画瓢将这些参数都留在了PCB成品上。这只是一个例子。若您自己将PCB文件转换成GERBER文件就可避免此类事件发生。

GERBER文件是一种国际标准的光绘格式文件,它包含RS-274-D和RS-274-X两种格式,其中RS-274-D称为基本GERBER格式,并要同时附带D码文件才能完整描述一张图形;RS-274-X称为扩展GERBER格式,它本身包含有D码信息。常用的CAD软件都能生成此二种格式文件。

如何检查生成的GERBER正确性?您只需在免费软件Viewmate V6.3中导入这些GERBER文件和D码文件即可在屏幕上看到或通过打印机打出。

钻孔数据也能由各种CAD软件产生,一般格式为Excellon,在Viewmate中也能显示出来。没有钻孔数据当然做不出PCB了。

4、何提高布通率?

完成一个印制板图的设计一般都要经过原理图输入--网络表生成--定义

Keepout Layer -- 网络表(元件)加载--元件布局--自动(手动)布线等过程。现今市面上流行的几种软件在元件自动步局功能上都不是很强大,往往通过手工步局更能提高布通率,但请别忘了充分运用Move to Gird 功能,她能将元件自动移到网格交叉点上,对提高布通率大有益处。

5、CB文件中如何加上汉字?在PCB文件中加汉字的方法有很多种,本人比较喜欢的方法还是下面将要介绍的:

A. 前提条件:您的PC中应安装有Protel99软件并能正常运行.

B. 步骤:将windows目录中的client99.rcs英文菜单文件copy 到另一目录下保存起来; 下载Protel99cn.zip 解包后将其中的client99.rcs复制到windows目录下; 再将其他文件复制到Design Explorer 99目录中;重新启动计算机后运行Protel99即会出现中文菜单,在放置|汉字菜单中可实现加汉字功能。

电路板设计的基本步骤

一般而言,印制电路板设计最基本的完整过程大体可分为以下三个步骤:

1、原理图的设计:

原理图的设计主要是利用protel 99的原理图设计系统(Advanced Schematic)绘制一张电路原理图。设计者应充分利用protel 99所提供的强大而完善的原理图绘图工具、测试工具、模拟仿真工具和各种编辑功能,来实现其目的,最终获得一张正确、精美的电路原理图,以便为接下来的工作做好准备。

2、产生网络表

网络表是电路原理图设计(sch)与印制电路板设计(PCB)之间的桥梁和纽带,它是印制电路板设计中自动布线的基础和灵魂。网络表可以由电路原理图生成,也可以从已有的钱制电路板文件中提取。

3、钱制电路板的设计

印制电路板的设计主要是针对protel 99的另外一个强大的设计系统---钱制电路板设计系统PCB而言的,设计者可以充分利用protel 99所提供的无可比拟的强大的PCB功能来实现印制电路板的设计工作。

简而言之,电路板的设计过程首先是绘制电路原理图,然后由电路原理图文件生成网络表,最后在PCB设计系统中根据网络表完成自动布线工作。也可以根据电路原理图直接进行手工布线而不必生成网络表。完成布线工作后,可以利用打印机或绘图仪进行输出打印。除此之外,用户在设计过程中可能还要完成其他一些工作,例如创建自已的元件库、编辑新元件、生成各种报表等。

了解了电路板设计的基本步骤之后,是不是觉得设计一块自已的电路板并不是一件难事了。事实上要真正设计出一块满足技术要求、功能完善、布局合理且可靠、实用、美观的电路板绝不是一朝一夕能做到的。还过没关系,万丈高楼平地起。只要你认真的学,一定没问题的

利用飞线手工布局和布线

一个印制板的布线是否能够顺利完成,主要取决于布局,而且,布线的密度越高,布局就越重要。几乎每个设计者都遇到过这样的情况,布线仅剩下几条时却发现无论如何都布不通了,不得不删除大量或全部的已布线,再重新调整布局!合理的布局是保证顺利布线的前提。

一个布局是否合理没有绝对的判断标准,可以采用一些相对简单的标准来判断布局的优劣。

最常用的标准就是使飞线总长度尽可能短。

一般来说,飞线总长度越短,意味着布线总长度也是越短(注意:这只是相对于大多数情况是正确的,并不是绝对正确);走线越短,走线所占据的印制板面积也就越小,布通率越高。在走线尽可能短的同时,还必须考虑布线密度的问题。

如何布局才能使飞线总长度最短并且保证布局密度不至于过高而不能实现是个很复杂的问题。因为,调整布局就是调整封装的放置位置,一个封装的焊盘往往和几个甚至几十个网络同时相关联,减小一个网络飞线长度可能会增长另一个网络的飞线长度。如何能够调整封装的位置到最佳点实在给不出太实用的标准,实际操作时,主要依靠设计者的经验观查屏幕显示的飞线是否简捷、有序和计算出的总长度是否最短。

飞线是手工布局和布线的主要参考标准,手工调整布局时尽量使飞线走最短路径,手工布线时常常按照飞线指示的路径连接各个焊盘。Protel的飞线优化算法可以有效地解决飞线连接的最短路径问题。

飞线的连接策略

Protel提供了两种飞线连接方式供使用者选择:顺序飞线和最短树飞线。

在布线参数设置中的飞线模式页可以设置飞线连接策略,应该选择最短树策略。

动态飞线在有关飞线显示和控制一节中已经讲到: 执行显示网络飞线、显示封装飞线和显示全部飞线命令之一后飞线显示开关打开,执行隐含全部飞线命令后飞线显示开关关闭。

飞线显示开关打开后,不仅规定的网络飞线自动在屏幕上显示,而且每当你手工调整布局移动封装位置时,与该封装连接的飞线也被自动显示。另外,自动显示连接封装飞线时, 除了与该封装相连接的飞线显示外,其余所有飞线都被自动关闭。

执行"编辑/移动/移动封装"命令,如果当前飞线显示开关处于打开状态,除了与该封装相连接的飞线自动显示外,其余所有飞线都被自动关闭。

当飞线策略为"最短树"时,飞线的起始终止点是变化的。 我们知道,最短树飞线并不是按照网络表中引脚的连接顺序来显示飞线的,而是根据封装引脚的实际位置经最短树计算后再决定一个网络中封装引脚的连接顺序;当一个封装的位置发生变时,依照最短树理论计算出的连接顺序也会发生变化,也即飞线的起始和终止点会发生变化,因此,在"最短树"策略下移动封装时,与该封装引脚相连接的飞线会随着封装位置的变化而变化,这就是所谓的动态飞线。

动态飞线采用就近找点连接入网和保证整个网络连接长度最短的飞线策略,所以,动态飞线连同最短树飞线总长度为我们布局时提供了相对最佳的判断标准。

具体地说:布局时,我们通过下述方式来确保动态飞线状态下布局的有效性。

(1)在整板范围内快速移动一个封装,如果与这个封装连接的飞线不发生大的变化,说明与这个封装引脚连接的电网络中结点数少,近于一一对应的连接,这个封装的位置不能任意放置并有较高的定位优先级,参照屏幕右下角显示的飞线长度可以找到该封装的最佳放置位置。 (2)在整板范围内快速移动一个封装,如果与这个封装连接的飞线变化比较大,说明与这个封装引脚连接的电网络中结点数多,这个封装不一定非固定放置在某个位置并具有较低的定位优先级,可以按照其他一些判别准则(如布局是否美观等)并参照屏幕右下角显示的飞线长度找到该封装的相对最佳放置位置。

(3)移动封装,右下角显示的飞线长度最小时放置的位置相对最佳。

(4)如果两个封装不论怎样移动位置其间的飞线连接关系不变,说明这两个封装间具有强的约束关系,应优先放置在一起;如果一个封装不论怎样移动位置与某几个封装间的飞线连接关系不变,说明这个封装与这几个封装间具有强的约束关系,应优先放置在这几个封装的重心或相对接近重心的位置;如果一个封装移动位置时飞线可以不断变化,即总能就近找到连接结点,说明这个封装与其他所有封装间具有弱约束关系,这个封装的位置可以最后确定并且所定的位置可以比较灵活。

动态飞线无疑是一个功能强大的布局工具,但是,由于每移动一下封装都必须重新计算相关网络的最短树,这需要一定的时间。因此,在低档PC机或大型设计上使用动态飞线时会感到移动封装不太灵活。这时,可以通过设置部分飞线模式和控制显示飞线网络的接点来解决这个问题。

动态飞线状态下移动封装时,按R键可以调整飞线的重显频率。重显频率分为5个等级,为1时飞线重显频率最高,适合于速度较快的机器;为5时飞线重显频率最低,适合于速度较慢的机器。

第四篇:PCB设计的要点和注意事项

要成为PCB高手,就要熟练常用的快捷键

按Shift点器件 选择

Ctrl+c 复制

Ctrl+v 粘贴

Shift+delete或者Ctrl+delete 删除已选部分

用得最快的还是Ctrl+delete 一按下就立杆见影

Shift+delete确切的讲是剪切命令按下该组合键后还要用十字光标点击所选元件才可以

剪切这相当是一种变相的删除当然也可以用Ctrl+X

小键盘区的 + - * 都可以切换layer

空格旋转

X x方向镜像

Y y方向镜像

V,U 单位切换 单位切换的另外一个更快的方法就是按Q

Shift+空格线的拐角方式选择

原理图绘制注意点

1,预防GND和VCC短路

对于放置的电源端口,双击看属性对话框中的Net中的名称是不是正确的,如果 电源端口的形状是正极(一个圆圈)但是属性对话框中的Net却是GND,那可就错了 2,ERC检查非常重要

一定要ERC检查SCH的连线是否有问题,基本上可以消除漏连,重复编号等错误. 3,原理图中器件封装的加入技巧及netlist的生成

a.元器件全部加入封装名

少数封装不一定要完全正确,只要原理图元件PIN的数量(Number)和PCB封装引脚 编号(Designator)对应即可,只要保证PCB

NETLIST 导入完全通过,可以在LAYOUT PCB时再修改.

b.部分元器件加入封装名

在PCB NETLIST 导入前放上未加封装的器件,并事前编号

c.简单原理图不加入封装名

在PCB NETLIST 导入前放上未知器件,并事前编号.

这样做的原因和好处:

在有些器件没有看到实样前,一样可以做好准备工作,并可以先连已知

的部分,不必把大量时间浪费,因为在LAYOUT时同样可以修改封装,

可以方便的移植其他PCB中的怪异封装,可以确保导入NETLIST导入完 全通过,而不必反复修改SCH中器件的封装.

PCB Layout 注意点

打印一分准确的原理图:

布局时,按电路图将电路划成不同的功能模块,如电源

部分,驱动部分,cpu部分放置,然后根据pcb的尺寸和安

装整体移动各相关模块,这样就能保证相同模块内的

走线最短,各个模块之间的连接最合理.

所以说,要画PCB首先要搞弄SCH的原理.

怎样画出一块准确PCB板

1.SCH原理图本身的准确及ERC的完全通过

2.PCB Netlist导入完全通过

注意几点:1,有些器件典型库中SCHLIB和PCBLIB

引脚编号是不同的.

NPN的封装PIN名称是1,2,3, 而库是

E,B,C的话是通不过的

3,SCH 中NETLABLE的不能超过八个字符.

只要元器件引脚的NUMBER和封装一样一定能

100%通过,可以采用上述SCH中加封装的方法.

怎样画出一块符合电气特性的PCB板

布线规则

1,再次强调布局和走线一定要按原理图进行,走线要短.

2,地线,电源线尽量加粗,高,低速和模,数地线分开一点接线.

3,一般而言,35um厚的铜箔,1mm宽能走1A的电流.

4,7805前的滤波电容一般为1A/1000uF,每个IC的电源脚

建议用104的电容进行滤波,防止长线干扰.

5,CPU的晶振走线一定要短,并用尽量用地线包住.

怎样画出一块漂亮的PCB板

有关铺铜:

铺铜的作用:

1,当然是美观了2,把铺铜和地线连接可以起到屏蔽作用3,减少腐蚀液的浪费 有关引脚:

1,单面板时焊盘尽量大,以增加附着力

2,补泪滴:为了加强焊盘和引线交*处的强度(避免钻孔时引线和焊盘之间出现断裂)

第五篇:PCB设计总结

【PCB设计概述】随着集成电路的工作速度不断提高,电路的复杂性不断增加,多层板和高密度电路板的出现等等都对PCB板级设计提出了更新更高的要求。尤其是半导体技术的飞速发展,数字器件复杂度越来越高,门电路的规模达到成千上万甚至上百万,现在一个芯片可以完成过去整个电路板的功能,从而使相同的PCB上可以容纳更多的功能。PCB已不仅仅是支撑电子元器件的平台,而变成了一个高性能的系统结构。这样,信号完整性EMC在PCB板级设计中成为了一个必须考虑的一个问题。

传统的PCB板的设计依次经过电路设计、版图设计、PCB制作等工序,而PCB的性能只有通过一系列仪器测试电路板原型来评定。如果不能满足性能的要求,上述的过程就需要经过多次的重复,尤其是有些问题往往很难将其量化,反复多次就不可避免。这些在当前激烈的市场竞争面前,无论是设计时间、设计的成本还是设计的复杂程度上都无法满足要求。在现在的PCB板级设计中采用电路板级仿真已经成为必然。基于信号完整性的PCB仿真设计就是根据完整的仿真模型通过对信号完整性的计算分析得出设计的解空间,然后在此基础上完成PCB设计, 最后对设计进行验证是否满足预计的信号完整性要求。如果不能满足要求就需要修改版图设计。与传统的PCB板的设计相比既缩短了设计周期,又降低了设计成本。一款好的PCB设计,可以给生产带来便利并节约成本。而设计好的PCB并不是拿到板厂就可以生产加工的,前期的PCB资料处理决定着对此产品研发、成本和品质控制,因此需要PCB设计人员在熟悉掌握相关软件应用的基础上,还要了解流程、工艺和PCB板高速信号完整性、抗干扰设计及电磁兼容等相关的知识。不重视PCB的设计往往会对公司造成极大的损失,重复的改板,影响了产品推向市场的时间,增加了研发投入,降低了产品的质量和竞争力,增加了售后服务,甚至造成整个项目投资的失败。

本课程系统地介绍了与PCB设计相关的理论和实践知识,结合业界最流行的仿真设计软件讲解如何在PCB上进行信号完整性设计及电磁兼容设计,并结合实际指出设计人员在设计中常出现的错误,从理论上分析产生问题的原因。同时进行大量成功和失败的案例讲解,为学员提供丰富的实践经验。 【PCB设计涉及的内容】

一、PCB设计基础

课程简介

PCB设计基础

地平面和叠层

20-H原则

3W法则

二、PCB的电气性能

导线电阻;

电感和电容;

特征阻抗;

传输延迟(高频板); 衰减与损耗;

外层电阻;

内层绝缘电阻。

三、PCB的抗干扰设计

PCB抗干扰设计设计的一般原则

印制电路板及电路抗干扰措施

特殊系统的抗干扰措施

降低噪声与电磁干扰的一些经验

四、电磁兼容设计

保证良好电磁兼容设计的措施

电子部件在高频下的特征

印制电路板设计中的电磁兼容性

多层板的电磁兼容性设计

五、信号完整性设计

关于高速电路

高速信号的确定

什么是传输线

所谓传输线效应

关于通孔的设计

避免传输线效应的方法

高速设计中多层PCB的叠层问题

高速设计中的各种信号线特点

SI问题的常见起因

SI设计准则设计的实现

SI问题及解决方法

六、仿真模型的理解和使用

SPICE模型

IBIS模型

IBIS模型的构成

IBIS模型的获取流程

上一篇
下一篇
返回顶部