圆柱与圆锥单元测试题
第一篇:圆柱与圆锥单元测试题
圆柱与圆锥 单元备课
圆柱与圆锥
单元分析:
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
教学目标:
1、认识圆柱和圆锥,掌握它们的基本特征,认识圆柱的底面,侧面和高,认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积,表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、这观察,设计和掉作圆柱、圆锥模型等活动,了解平在图形与立体图形之间的联系,发展学生的空间观察
教学重点:
1、圆柱体积,表面积计算;2、圆锥体积计算 教学难点:
圆锥体积计算公式的推导 教学关键:
利用教具,学具进行实验活动,引导学生观察、思考经历计算公式的推导过程
教学时数:13课时
课时安排:
1、圆柱…………………………..8课时
2、圆锥…………………………..3课时
3、整理和复习…………………..2课时
4、单元测试……………………..1课时
第二篇:人教版数学六年级下册第二单元圆柱与圆锥单元备课
第 二 单 元 圆 柱 与 圆 锥
一、 教材分析
本单元的学习内容是:圆柱与圆锥的认识,圆柱的表面积,圆柱与圆锥的体积。
本单元是在学生认识了圆,掌握了长方体和立方体特征的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。
本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。
二、教学目标:
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、教学重、难点:
重点:理解、掌握圆柱和圆锥的基本特征。会运用公式计算体积,解决有关的简单实际问题。 难点:圆柱、圆锥体积计算公式的推导。
四、教学措施
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
(5)加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。教学时应注意加强与实际生活的联系,重视运用所学知识解决实际问题的意识与能力的训练。
(6)让学生经历探索知识的过程,培养自主解决问题的能力。教学时,应放手让学生经历探索的过程,在观察、操作、推理、想像过程中掌握知识、发展空间观念,让学生在经历试验探究的过程中获取,以改变只按教材说明进行演示得出结论的做法。
五、教学准备
圆柱、圆锥实物,模型,多媒体课件,直尺,三角板,铅笔等。
六、课时安排:
圆柱的认识 „„„„„1课时 圆柱的表面积 „„„„2课时 圆柱的体积 „„„„„2课时 圆锥的认识„„„„„ 1课时 圆锥的体积„„„„„ 2课时 整理复习„„„„„„ 1课时
第三篇:小学数学六年级下册第二单元解说教材_圆柱与圆锥
悉心钻研教材 领悟教材内涵
各位老师:
大家好!我今天解说的内容是人教版小学数学六年级下册第二单元《圆柱与圆锥》。下面我分教学内容、教学目标和教学重难点、教材的编写体例、教材的内在结构和逻辑关系、教材的编排特点以及如何处理这些教材六个方面进行说课。
一、教学内容。
第二单元《圆柱与圆锥》属于“空间与图形”版块中图形的计算。包括:圆柱认识、圆柱的表面积、圆柱的体积、圆锥的认识、圆锥的体积。
二、教学目标。
1、单元教学目标:
(1)认识圆柱和圆锥,掌握他们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
(2)探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
(3)通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
2、教学重点:
(1)圆柱的表面积、体积的计算。 (2)圆锥体积的计算。
3、教学难点:
(1)圆柱的表面积和体积的计算公式的推导 (2)圆锥体积的计算公式的推导。
三、教材编写体例
教材在编写上遵循了“特征—表面—体积”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。
四、教材的内在结构和逻辑关系
本单元是在学生认识了圆,掌握了长方体和立方体特征的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,学习圆柱和圆锥的知识扩大了学生认识形体的范围,增加了形体的知识,促进空间观念的进一步发展。因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
五、编排特点
圆柱与圆锥是传统的教学内容,对这部分内容的编排,在内容和要求方面体现了新的教学理念。
1、加强了所学知识与现实生活的联系。对圆柱、圆锥的认识,教材均通过列举大量现实生活中具有圆柱、圆椎体特征的实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具有如此特征的实物,从而加强所学知识与现实生活的联系,加深了学生对圆柱、圆锥的认识,进一步感受几何知识在生活中的广泛应用。
2、加强了对图形特征、求表面积和体积方法的探索过程。教材加强了动手实践、自主探索,让学生经历知识的形成过程,获得更多的自主探索和空间观念的训练机会。例如,圆柱的特征,是让学生动手实验、自主探索得到的。在教学圆柱展开图的特征时,教材从让学生自主探索“圆柱的侧面展开后是什么形状?”开始,让学生动手操作,剪一剪并展开观察,再把展开得到的长方形重新包上,探索并发现此长方形的长等于圆柱底面的周长,宽等于圆柱的高。这就为进一步探索圆柱表面积的计算方法打下基础,也加深了学生对圆柱特征的认识,锻炼了学生空间想像的能力。
3、加强了学生在操作中对空间与图形问题的思考。在编排圆柱和圆锥的认识时,用长方形(或三角形)的硬纸贴在木棒上快速转动转出圆柱(或圆锥)的活动。此项活动不仅可以激发学生的学习兴趣,了解平面图形与立体图形之间的联系和转换关系;同时可以使学生在操作、观察、想像、推理过程中,进一步认识圆柱、圆锥的特征,发展空间观念。
六、对教材的处理
1、对于圆柱的认识这一部分:
首先从生活中的圆柱实物或模型入手,引导学生认识圆柱的特征及各个部分的名称,让学生经历由“形象——表象——抽象的过程。
然后通过观察交流,抽象圆柱的特征。例1的教学,重点在认识圆柱的特征。教学中应加强直观演示并让学生通过观察和操作,即看一看,摸一摸,比一比认识圆柱的底面、侧面和高,发现他们的特征;之后安排这样一个有趣的操作活动,使学生从旋转的角度认识圆柱,即绕长方形的一条边快速旋转,形成圆柱形状,感受并沟通从平面图形与立体图形的转换。让学生快速转动长方形纸片活动,只要求学生操作、感知,不必做更深入的讲解。
本节课的难点应放在例2,即认识圆柱的侧面展开图。指导展开圆柱侧面的方法,理解侧面展开后的形状。教学时要放手让学生经历探索知识的过程,再一次沟通从立体图形再到平面图形的转换。可这样设计教学过程:
(1)先让学生摸一摸圆柱形实物,圆柱侧面在哪里,猜想一下侧面展开后是什么形状。
(2)接着让学生动手操作再剪开侧面,再展开,看有什么发现。学生准备的圆柱体各不相同,在剪开的过程中并不是千篇一律,故可能会出现:圆柱的侧面展开后是一个长方形或是平行四边形,对于这些操作结果教师都应给予肯定和鼓励,并让学生说说是怎样剪的,以培养学生从不同角度思考问题的习惯。 (3)最后再让学生观察思考“圆柱侧面展开得到的长方形的长、宽与圆柱的什么有关?”让学生经过分析、比较,概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。最后让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过在亲历立体图形与其展开图之间的转化,逐步建立了立体图形与平面图形的联系,进一步发展了空间观念。课外作业可让学生制作圆柱,加深对圆柱特征的认识,也为后面学习计算圆柱的表面积做准备。
2、圆柱的表面积这一部分主要是理解圆柱表面积的概念,探索表面积的计算方法。
因为学生已有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。所以对于圆柱表面积的理解并不困难。
例3的教学让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。圆柱的侧面积=底面周长×高。
例4的教学是关于圆形物体表面积的计算,关于例4的教学,我个人认为要注意这样几点:①圆柱形物体在计算表面积之前一定要先判断此圆柱体是几个面,什么面,再来进行计算;②圆柱形物体表面积的计算的步骤较多,学生在熟练应用公式计算之前,最好是分步进行计算,即先求出侧面积和底面积,再求出表面积。注意每一步的运算结果要写上正确的计量单位;③圆柱表面积计算结果在取近似值时,一定要注意不可乱用“四舍五入法”取近似值,而是用进一法取近似值,。
完成例4后,,做一做是一道计算圆柱表面积的基本题型可让学生独立完成,订正后后可与例4进行比较,找出两题不同之处,同样都是求圆柱体的表面积,为什么这题要求侧面和两个底面的面积之和,而例4求侧面和一个底面的面积之和?使学生明确在解决实际问题时,求表面积要根据具体情况确定计算哪些面的面积之和。
3、圆柱的体积这一部分可采用转化策略来推导圆柱的体积计算公式。 例5是教学圆柱体积公式的推导,
(1)例5,渗透了转化的思想。首先从回顾旧知(长方体、正方体的体积计算)入手,引出圆柱体积的计算问题,并提出圆柱能否转化成已学过的立体图形来计算体积。接着通过教具演示图说明把圆柱的底面分成若干个相等的扇形,把圆柱切开,拼成一个近似的长方体。在这个教学环节中,教师一定不要忽略操作与直观演示,也可借助多媒体。然后引导观察和推理,得出这个长方体的底面积等于圆柱的底面积S,高就是圆柱的高h,并由长方体的体积计算公式得出圆柱的体积计算公式为V=Sh (2)在例6之前,安排了已知圆柱底面半径r和高h,将圆柱体积计算公式V=Sh改写为V=∏r²h。 的内容。
(3)例6是利用圆柱体积计算解决问题。创设了一个生活化的问题情境“这个杯子能不能装下这袋牛奶?”解决这个问题,先要计算杯子的容积,使学生明白圆柱形容器容积的计算方法,跟圆柱体积的计算方法相同,可直接利用V=计算。
4、圆锥包括圆锥的认识和体积两部分内容。
(1).圆锥的认识内容主要包括:圆锥的特征及各部分名称,其编排与圆柱的认识类似,教学中可参考圆柱的教学,这部分可放手学生自己探究发现总结。 在本节课中圆锥高的认识是教学难点,教学时可联系圆柱的高进行:“圆柱两底面之间的距离叫做圆柱的高。那么圆锥的高指什么?”学生可能会出现两种不同的说法“从圆锥的顶点到底面圆心的距离是圆锥的高”和“从圆锥的顶点到底面圆周上的一点的距离是圆锥的高”,教师可让学生进行小组辩论、交流,准确认识圆锥的高,并区分高和母线(母线的名称不要给学生介绍)。为进一步认识圆锥的高,可以通过实际测量或利用课件介绍测量圆锥高的方法。做转动三角形纸片活动时,可先让学生猜测:“一个长方形通过旋转,可以形成一个圆柱,那么你们知道绕一个三角形的直角边旋转,会形成什么形状?”认识圆锥后,可以将圆锥和圆柱从组成和特征角度进行对比,使学生加深对这两种图形特征的整体的认识。
(2)圆锥的体积中例2教学圆锥体积公式的推导,例3是圆锥体积公式的应用。 例2的教学可按“引出问题——联想、猜测——实验探究——导出公式”四步进行。首先提出“你有办法知道这个铅锤的体积吗?”让学生讨论,讨论结果是:可以用排水法,但这种方法太麻烦。从而产生推导圆锥体积公式的动机。再让学生联想、猜测。回想会计算哪些图形的体积,思考圆锥的体积和哪种图形的体积有关?从而将圆锥和圆柱的体积联系起来。接着进行实验探究。课前让学生准备好等底、等高的圆锥和圆柱,通过圆柱圆锥相互倒水或沙子的实验,探究圆锥和圆柱体积之间的关系。最后导出公式。通过试验学生发现:等底等高的圆锥和圆柱,圆锥的体积是圆柱体积的。由此得出圆锥体积的计算公式V=Sh。
5、对于整理和复习可采取先引导归纳总结,形成知识网络。再借助直观手段帮助学生回顾、总结图形的特征及计算方法。最后让学生注意知识之间的内在联系与区别。
悉心钻研教材 领悟教材内涵
阳店镇中心小学
第四篇:人教版小学六年级数学下册第二单元《圆柱与圆锥》测试卷最新版
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
崖城镇保港小学2011-2012学
第二学期六年级数学科《圆柱与圆锥》学业水平测试卷
时间80钟,满分100分。
班级___________ 姓名__________ 得分___ ______
一、选一选。(将正确答案的序号填在括号里)(每题2分,共12分。)
1、下面物体中,(
)的形状是圆柱。
A、
B、
C、
D、
2、一个圆锥的体积是36dm3,它的底面积是18dm
2,它的高是(
)dm。
A、2
3B、2
C、6
D、18
3、下面(
)图形是圆柱的展开图。(单位:cm)
4、下面(
)杯中的饮料最多。
5、一个圆锥有(
)条高,一个圆柱有(
)条高。
A、一
B、二
C、三
D、无数条
6、如图:这个杯子(
)装下3000ml牛奶。
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
A、能
B、不能
C、无法判断
二、判断对错。(每题2分,共10分。) (
)
1、圆柱的体积一般比它的表面积大。 (
)
2、底面积相等的两个圆锥,体积也相等。
(
)
3、圆柱的体积等于和它等底等高的圆锥体积的3倍。 (
)
4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。 (
)
5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。(5分。)
四、填一填。(每空2分,共20分。)
1、2.8立方米=(
)立方分米
6000毫升=(
)升 3060立方厘米=(
)立方分米
5平方米40平方分米=(
)平方米
2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是(
)cm2,侧面积是(
)cm2,体积是(
)cm3。
3、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是(
)平方分米。(接口处不计)
4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是(
)cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是(
)cm3。
五、求下面图形的体积。(单位:厘米)(每题4分,共16分。)
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
六、解决问题。(第1题8分,2-4题每题5分,第5题8分,共31分。)
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?
⑵这个薯片筒的体积是多少?
2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
3、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。镶瓷砖的面积是多少平方米?
4、如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?
(单位:厘米)
5、张师傅要把一根圆柱形木料(如右图)削成一个圆锥。 ⑴削成的圆锥的体积最大是多少立方分米?
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
⑵请你提出一个数学问题并解答。
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
七、拓展应用。(6分。)
某种饮料罐的形状为圆柱形,底面直径是7cm,高是12cm。将24罐这种饮料按如图所示的方式放入箱内,这个纸箱的长、宽、高至少各是多少厘米?
更多免费资源下载绿色圃中小学教育网http:// 课件|教案|试卷|无需注册
第五篇:第二单元圆柱、圆锥教案
第二单元(圆柱、圆锥)单元备课
小学数学第十二册(人教版)
天河区华阳小学
杨海英
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌
握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的
意义。会推导表面积、侧面积、体积的公式,认识“进一法”取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵
活解决实际问题。
4、培养学生观察、比较、归纳的能力,
以及空间观念。
5、培养学生逻辑思考能力,有条理性的
解决问题的能力。
单元重点:圆柱体体积的计算
单元难点:(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。 (3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。 (3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的(
)。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的(
)(3)做一节铁皮水管,要多少铁皮是求水管的(
)(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的(
)
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答
(2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积 是圆柱体的体积的( ),圆柱体体积比圆锥体体积多(
),圆锥体积比圆柱体少(
)。 (2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是(
)立方厘米,圆锥体积比圆柱体积少(
)立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大(
)立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)
课时安排:
1、圆柱的认识31页至33页 及例1
2、圆柱的表面积33页例2——例3
3、圆柱的体积公式的推导
36页例4及补
充一道已知R求V的例题。
4、认识圆柱的容积37页例5
5、圆柱有关公式的对比练习39页
8、9(增加不同位置类型的圆柱体)39页
7、10
6、圆锥的认识41页
7、圆锥的体积公式的推导42页至43页例1
8、圆锥体积的应用43页例2
第三课时课例教案:天河区华阳小学
杨海英
第三课时:计算圆柱体的体积36页例4及补充例题(已知R求V)
目标:
1、使学生知道圆柱体体积公式的推导过程,理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。
2、再次培养学生利用转化的思想探索新知的意识。 重点:圆柱体的体积公式的推导。 难点:圆柱体体积公式的推导
教具和学具:教师准备课件一个,投影仪,学生准备圆柱形的橡皮1~2块。
重点包含要素的分析:
1、让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。
2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。
与其它教学重点的联系:掌握V=SH是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。
突出重点的策略:
1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。
2、学生有前面的推测,让学生小组合作用实物(学生自备圆柱体形状的橡皮)操作,验证猜想,探索体积的计算方法。
3、补充一个已知R求V的例题进一步突出求V必须先求S。突出V=SH的基础性。
教学过程:
一、复习引入:
1、 体积的概念
2、 我们学过求哪些几何图形的体积?怎样求?
(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)
3、 同学们知道什么是圆柱体的体积吗?
4、 想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。-----出课题
二、新课探索:
1、;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?
如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?
2、转化成什么图形,小组讨论。(猜想)
3、汇报猜想的结果。
4、动手实践:把圆柱体切拼成近似的长方体。
5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?
6、汇报,全班交流。
长方体的体积=圆柱体的体积
长方体的高
=圆柱体的高
长方体的底面积=圆柱体的底面积
7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下: 长方体的体积=底面积×高 圆柱体的体积=底面积×高
V=Sh 8小结:正方体、长方体、圆柱体的体积的计算方法
V=Sh
三、公式的应用:
1、教学例题4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少? (1) 带领学生画图。(培养学生会画图帮助分析的能力)
(2) 让学生讲方法,尝试列式。教师板书过程。
2、补充例题:已知一个圆柱形的茶叶筒,底面半径是5厘米,这个茶叶筒的体积是多少? 学生讨论方法汇报,教师板书解题过程:
3、小结:对比以上两个题的解题过程,你觉得计算圆柱体的体积一定要根据条件先计算什么呢?(明确只要不是直接给出底面积,那就必须先由条件求出底面积。并补充V=лr²×h)
四、巩固练习:38页
1、2
五、全课总结:今天你学到了什么?