范文网 论文资料 平面向量与三角形四心(集锦)

平面向量与三角形四心(集锦)

平面向量与三角形四心第一篇:平面向量与三角形四心讲义---平面向量与三角形四心的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应。

平面向量与三角形四心

第一篇:平面向量与三角形四心

讲义---平面向量与三角形四心的交汇

一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1)OAOBOC0O是ABC的重心. 证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

x1x2x3x(x1x)(x2x)(x3x)03 OOAOBOC0yyy23(y1y)(y2y)(y3y)0y13是ABC的重心. 证法2:如图

AOAOBOC OA2OD0

AO2OD

A、O、D三点共线,且O分AD

为2:1

OEO是ABC的重心

(2)OAOBOBOC证明:如图所示O是三角形

BDCOCOAO为ABC的垂心.

ABC的垂心,BE垂直AC,AD垂直BC, D、E是垂足.OAOBOBOCOB(OAOC)OBCA0

AOBAC

E同理OABC,OCAB

BOO为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内心

aOAbOBcOC0O为ABC的内心. ABAC、分别为AB、AC方向上的单位向量, cbABAC平分BAC, cbABACbc),令 AO(abccb证明:DCAOABACbc() abccb化简得(abc)OAbABcAC0

aOAbOBcOC0

(4)OAOBOCO为ABC的外心。

三、典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

例2:(03全国理4)O是平面上一定点,

A、B、C是平面上不共线的三个点,动点

P满足OPOA(ABABACAC),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

例3:1)O是平面上一定点,

A、B、C是平面上不共线的三个点,动点

P满足OPOA(ABABcoBsACACcoCs),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足ABACOPOA(),[0,), 则动点P的轨迹一定通过△ABC的( ) |AB|sinB|AC|sinCA. 重心 B. 垂心 C. 外心 D. 内心

3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足OBOCABACOP(), [0,), 则动点P的轨迹一定通过△ABC的( ) 2|AB|cosB|AC|cosCA. 重心 B. 垂心 C. 外心 D. 内心

例

4、已知向量OP12P31,OP2,OP3满足条件OP1OP2OP30,|OP1||OP2||OP3|1,求证:△PP是正三角形.

ABC例

5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = OHm(OAOBOC),

.

6、点 ). O是三角形ABC

所在平面内的一点,满足OAOBOBOCOCOA,则点

O是ABC的(

A.三个内角的角平分线的交点 C.三条中线的交点

B.三条边的垂直平分线的交点 D.三条高的交点

例7

在△ABC内求一点P,使

AP2BP2CP2最小.

222222例8已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA||OC||AB|,则O为△ABC的 心.

例9..已知O是△ABC所在平面上的一点,若OAOBOBOCOCOA,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

222222例10 已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA|=|OC||AB|,则O点是△ABC的( ) A. 垂心 B. 重心 C. 内心 D. 外心

例11已知O是△ABC所在平面上的一点,若(OAOB)AB=(OBOC)BC=(OCOA)CA= 0,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

例12:已知O是△ABC所在平面上的一点,若aOAbOBcOC= 0,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

aPAbPBcPC例13:已知O是△ABC所在平面上的一点,若PO(其中P是△ABC所在平面内任意一点),

abc则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

四、配套练习:

1.已知ABC三个顶点A、B、C及平面内一点

P,满足

PAPBPC0,若实数满足:ABACAP,则的值为( )

A.2 B.32 C.3 D.6 3

2.若ABC的外接圆的圆心为O,半径为1,OAOBOCA.

0,则OAOB( ) 12 B.0 C.1 D.1 23.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形A.0 B.

ABOC面积之比是( )

32 C.

54 D.

43

是ABC的( ) 4.ABC的外接圆的圆心为O,若OHOAOBOC,则HA.外心 B.内心 C.重心 D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OABCOB222

CAOCAB222,则O是ABC的( )

A.外心 B.内心 C.重心 D.垂心 6.ABC的外接圆的圆心为O,两条边上的高的交点为H,OH则实数m =

17.(06陕西)已知非零向量与满足(+)〃=0且〃= , 则△ABC为( )

2A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 8.已知ABC三个顶点

m(OAOBOC),

A、B、C,若ABABACABCBBCCA,则ABC为( )

2A.等腰三角形 B.等腰直角三角形

C.直角三角形 D.既非等腰又非直角三角形

9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC), [0,). 则P点的轨迹一定通过△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

10.已知O是△ABC所在平面上的一点,若OAOBOC= 0, 则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

111.已知O是△ABC所在平面上的一点,若PO(PAPBPC)(其中P为平面上任意一点), 则O点是△ABC

3的( ) A. 外心 B. 内心 C. 重心 D. 垂心

第二篇:向量与三角形四心的一些结论

【一些结论】:以下皆是向量

1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)

4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²(AP就表示AP向量 |AP|就是它的模)

5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心

8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点

【以下是一些结论的有关证明】

1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ

(AB/(|AB|sinB)+AC/(|AC|sinC))

OP-OA=

λλ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过

4.OP=OA+

λλ(ABcosC/|AB|+ACcosB/|AC|)OP=OA+(ABcosC/|AB|+ACcosB/|AC|)AP=λ(ABcosC/|AB|+ACcosB/|AC|)AP•BC=λ(AB•BC cosC/|AB|+AC•BC cosB/|AC|)=λ([|AB|•|BC|cos(180° -B)cosC/|AB|+|AC|•|BC| cosC cosB/|AC|]=λ[-|BC|cosBcosC+|BC| cosC cosB]=0,所以向量AP与向量BC垂直,P点的轨迹过垂心。5.OP=OA+λ(AB/|AB|+AC/|AC|) OP=OA+λ(AB/|AB|+AC/|AC|) OP-OA =λ(AB/|AB|+AC/|AC|)AP=λ(AB/|AB|+AC/|AC|)AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,向量AB与AC的单位向量的和向量,因为是单位向量,模长都相等,构成菱形,向量AB与AC的单位向量的和向量为菱形对角线,易知是角平分线,所以P点的轨迹经过内心

第三篇:三角形的四心的向量表示

222(1)O为ABC的外心OAOBOC.外心(三条边垂直平分线交点) (2)O为ABC的重心OAOBOC0.重心(三条边中线交点) (3)O为ABC的垂心OAOBOBOCOCOA.垂心(高线交点)(4)O为ABC的内心aOAbOBcOC0.内心(角平分线交点)

方向上的单位分别为证明:前三个心的性质都好证明,下面给出问题(4)的证明:cb

向量,平分BAC, cb

), (cbBCBA同理:BOu() acuABACBCBA11ABAOOB()u()[()u]AB()AC cbaccacab

11()u1a11bccacu()u1得代入解得, bcacabcu0ab三角形的四心的向量表示 设O为ABC所在平面上一点,角A,B,C所对边长分别为a,b,c,则

bc() abccb

化简得(abc)bc, abc

第四篇:高考二轮复习数学考点突破之数列+三角函数与平面向量

高考二轮数学复习:三角函数与平面向量

1.三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一.近几年对三角函数的要求基本未作调整,主要考查三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和角与倍角公式等.高考对三角函数与三角恒等变换内容的考查,一是设置一道或两道客观题,考查三角函数求值、三角函数图象与性质或三角恒等变换等内容;二是设置一道解答题,考查三角函数的性质、三角函数的恒等变换或三角函数的实际应用,一般出现在前两个解答题的位置.无论是客观题还是解答题,从难度来说均属于中低档题目,所占分值在20分左右,约占总分值的13.3%.

2.平面向量是连接代数与几何的桥梁,是高考的重要内容之一.高考常设置1个客观题或1个解答题,对平面向量知识进行全面的考查,其分值约为10分,约占总分的7%.近年高考中平面向量与解三角形的试题是难易适中的基础题或中档题,一是直接考查向量的概念、性质及其几何意义;二是考查向量、正弦定理与余弦定理在代数、三角函数、几何等问题中的应用.

1.2011年高考试题预测

(1)分析近几年高考对三角函数与三角恒等变换部分的命题特点及发展趋势,以下仍是今后高考的主要内容:

①三角函数的图象与性质是高考考查的中心内容,通过图象求解析式、通过解析式研究函数性质是常见题型.

②解三角函数题目的过程一般是通过三角恒等变换化简三角函数式,再研究其图象与性质,所以熟练掌握三角恒等变换的方法和技巧尤为重要,比如升幂(降幂)公式、asin

x+bcos

x的常考内容.

③通过实际背景考查同学们的数学建模能力和数学应用意识.

高考二轮复习数学考点突破之数列

1.本专题是高中数学的重要内容之一,在高考试题中一般有2~3个题

(1~2个选择、填空题,1个解答题),共计20分左右,约占总分的13%.选择题、填空题的难度一般是中等,解答题时常会出现与函数、三角、不等式等知识交汇的问题,故多为中等偏上乃至较难的问题.

2.数列是高中数学的重要内容,又是学习高等数学的基础.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏,有关数列的试题一般是综合题,经常把数列与不等式的知识综合起来考查,也常把数列与数学归纳法综合在一起考查.探索性问题是高考的热点,常有数列解答题中出现.

3.近两年来,高考关于数列方面的命题主要有以下三个方面:(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式.

(2)数列与其他知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合.(3)数列的应用问题,其中主要是以增长率问题为主.试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,有一些地方用数列与几何的综合,或与函数、不等式的综合作为最后一题,难度较大.热点,常有数列解答题中出现.

第五篇:平面向量、三角公式知识回顾

2013.03.18:知识回顾——平面向量、三角公式

一.平面向量:

1. 与的数量积(或内积):

ab|a||b|coscos

2.平面向量的坐标运算:

(1)设A(x),则ABOBOA

1,y1),B(x2,y2(x2x1,y2y1).

(2)设a=(x1,y1),b=(x2,y2),则ab=x1x2y1y2. (3)设a=(x,y),则a

x2y2

3.两向量的夹角公式:

设a=(xabx1x2y1y21,y1),b=(x2,y2),且b0,则cosab

x

21y1x2y2

4.向量的平行与垂直:

// x1y2x2y10.

() ab0x1x2y1y20.

二.三角函数、三角变换、解三角形:

1.同角三角函数的基本关系:

(1)平方关系:sin2+ cos2=1。 (2)商数关系:

sincos=tan(

k,kz) (3)asinbcos

a2b2sin()(其中辅助角与点(a,b)在同一象限,且tan

b

a

)2.诱导公式:(三角函数符合分配——“一全、二正、三切、四余”) (第一组)——函数名不变,符号看象限

1sin2ksin,cos2kcos,tan2ktank.

(第一象限) 2sinsin,coscos,tantan.(第三象限) 3sinsin,coscos,tantan.(第四象限) 4sinsin,coscos,tantan.(第二象限)

(第二组)——函数名改变,符号看象限

5sin

2cos,cos2



sin.(第一象限) 6sin

2cos,cos2



sin.(第二象限) (7)sin(

32)cos,3

2)sin.(第四象限) (8)sin(32)cos,3

)sin(第三象限)

3.三角函数和差角公式:

sin()sincoscossincos()coscossinsin

tan()

tantan

1tantan

变式:tantantan()(1tantan)

4.二倍角公式:

sin22sincos变式:1sin(sin

cos

)22

cos2cos2sin2

变式:升幂公式:1+cos=2cos

2cos212

1-cos=2sin

12sin2

降幂公式:cos21cos22sin2

1cos22

tan 22tan1tan2

注:sin(cos

sin)2cos

222sin2

5.正弦定理:

asinAbsinBc

sinC

2R.

变形:a2RsinA,b2RsinB,c2RsinCa:b:csinA:sinB:sinC 6. 余弦定理:

b21)求边: a2

b2

c2

2bccosA;(2)求角:cosAc2a2

(2bc

a2bc2a2

2cacosB;cosBc2b222ac

c2a2b2

2abcosC;cosCa2b2c22ab

7. 三角形面积定理:

S111

2absinC2bcsinA2

casinB=pr

(其中p1

(abc), r为三角形内切圆半径)

上一篇
下一篇
返回顶部