数字示波器设计与制作
第一篇:数字示波器设计与制作
工程师电子制作故事:数字示波器DIY设计
2012年03月19日 16:44 来源:本站整理 作者:电子大兵 我要评论(0)
随着电子技术的发展和电路结构的变化,对电路测量的要求也变得更高,在电子制作中会发现对很多参数的测量已不是一块万用表所能胜任的了,比如单片机某I/O口的输出波形或制作放大器测其频率响应等等,所以示波器自然而然地和万用表一样变成了电子工程师和爱好者的必备工具。然而示波器动辄几千上万甚至数万元的价格不是每个人都能接受的,如果你是一名电子爱好者或者和我一样是一名电子专业的大学生,何不发挥自己的聪明才智自己制作一台够用的示波器,不仅省钱,更可以享受DIY带来的独特乐趣!
下面就示波器的基本原理简要介绍一下,再就数字示波器与模拟示波器做一个简要的比较。物理学理论可以证明,一端通过细绳固定的重物在作摆动时,与中心垂线的距离满足正弦波规律。沙漏实验可以清晰地显示这个随时间变化的波形:用沙漏充当重物,并且在沙漏底下的桌面上平铺一张纸,当沙漏开始摆动时,让纸匀速移动。这样,沙漏中流出的细沙,就在纸上留下了一个正弦波痕迹,如图1所示。利用这种设计思想,可以完成波形在平面上(对应于时间的流动)的展开。
这种设计思想在波形记录、显示中被广泛采用,比如心电图机,就是用原地摆动的电热针,在匀速移动的记录纸带上描记出心电波形。
利用心电图机的结构,虽可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使用的CRT示波管被应用到示波器的设计中。模拟示波器把需观测的两个电信号加至示波管的X、Y 通道以控制电子束的偏移,从而获得荧光屏上关于这两个电信号关系的显示波形。这种模拟示波器体积大、重量重、成本高、价格贵,并且不太适合用于对非周期的、单次信号的测量。数字示波器首先对模拟信号进行高速采样获得相应的数字数据并存储。用数字信号处理技术对采样得到的数字信号进行相关处理与运算,从而获得所需的各种信号参数。根据得到的信号参数绘制信号波形,并可对被测信号进行实时的、瞬态的分析,以方便使用者了解信号质量,快速准确地进行故障的诊断。测量开始时,操作者可通过操作界面选定测量类型、测量参数及测量范围(可选自动设置,由仪器自动设置最佳范围);微处理器自动将测量设置解释到采样电路,并启动数据采集;采集完成后,由微处理器对采样数据按测量设置进行处理,提取所需要的测量参数,并将结果送显示部件。
使用模拟示波器和数字示波器通常都能很好地观察简单重复性信号。但是两者都有其优点和局限性,如图2所示。对于模拟示波器来说,由于CRT的余辉时间很短,因而难于显示频率很低的信号。由于示波管上的扫描轨迹亮度和扫描速度成反比,所以具有快速上升、下降时间的低重复速率信号就很难看到。而数字示波器的扫描轨迹亮度和扫描速度与信号重复速率无关,故可以很好地反映出来。对于显示具有较高重复速率的重复性信号的快速上升、下降沿来说,数字存储示波器和模拟示波器的性能几乎没有什么区别,用两种示波器都能很好地观察信号波形。当要进行信号参量的测量时,数字存储示波器的优点在于具有自动测量各种参数的能力。而使用模拟示波器时,则必须自己设置光标、分析理解显示的波形才能得到测量的结果。但是如果要进行调整工作,那么一般最好使用模拟示波器。这是因为模拟示波器的实时显示能力使它在每时每刻都能显示出输入的电压。其波形更新速率(每秒钟在屏幕上描画扫描轨迹的次数)很高,所以信号的任何变化都会立即显示出来。与模拟示波器相反,数字示波器所显示的是用采集的波形数据重建的波形,所以其波形更新率远低于模拟示波器,结果在信号发生变化和变化了的信号在屏幕上显示出来之间就有了一定的时间延迟,这是数字示波器的重大缺点。
但是综合起来数字示波器还是有很大优势的。
自制示波器,做模拟示波器还是数字示波器?当然要做就做数字的!因为做数字示波器更简单,请往下看:
1. 模拟示波器需要与带宽相适应的CRT示波管,随着频率的提高,对CRT示波管的工艺要求严格,成本增加,存在技术瓶颈。所以在电子市场上不好买,性能好的大多数是进口品牌,其价格昂贵且需要处理的问题也多,比如要产生阳极高压、扫描锯齿波,还要对示波管进行电磁屏蔽等等,而且做出来体积很大,便携就更谈不上了。而数字示波器只需要与带宽相适应的高速A/D转换器,其他存储器和D/A转换器以及显示器都是较低速的部件,显示器可用LCD显示模块,在电子市场很容易买到,价格也不贵而且应用简单,只需考虑与微处理器的接口,体积小且功耗远小于CRT示波管。使用LCD显示模块做示波器,做成便携的很容易,做成示波表都没问题!当然LCD显示模块也有其不足之处,比如亮度和对比度不如CRT示波管,但综合考虑,LCD显示模块的优势还是比较明显的。
2. 模拟示波器是一个完全的硬件结构,做好之后很难进行功能升级,而数字示波器不同,在保证基本硬件后它的控制以及其他功能的实现都是由软件来实现的。这样升级就变得非常容易,你甚至可以把它当成一块开发板用来练习编程!做一个能当开发板用的示波器,你还犹豫吗?
基于以上两种原因,制作数字示波器当然是不二之选!
本文介绍的就是我制作的一台便携式数字示波器(如图3所示)。
由于采用320×240分辨率的显示器,所以显示波形非常细致。图4~图11为该示波器测量不同频率信号时的实拍照片。
5Hz的信号用一般的模拟示波器测量,只能看到一个亮点在屏幕上游动,根本看不出完整的波形,而我做的这个示波器可以显示出完整的波形,在测量低频率信号时这是一个很大的优势。
该示波器由6部分电路构成,分别是:
1. 输入程控放大(衰减)电路2. 高速AD转换电路3. FIFO存储电路4. 显示控制电路5. 时钟产生电路6. 测频与控制电路在这几部分中,最重要的是程控放大电路和AD转换电路,因为这两个电路是这个数字示波器的咽喉,程控放大电路决定了示波器的输入带宽和垂直分辨率,AD转换电路决定了示波器水平分辨率,这两个分辨率直接决定着示波器性能的优劣。这两部分电路将被测信号转换成后面的处理电路所需的数据信号,庆幸的是这几部分电路都可用高性能的集成电路加少量外围器件构成,电路设计简单,调试也很简单。整个示波器我觉得最难的应该是程序,也就是软件方面。
软件承担着该示波器的所有数据处理和控制任务,包括AD采样控制、水平扫速控制、垂直灵敏度控制、显示处理、峰峰值测量、频率测量等任务。为了提高性能,这个示波器使用了两片单片机,分别用于显示和控制,所以程序的设计还要考虑两个单片机之间的通信问题,这些在文章的各章节都会有详细的描述和解释。
通过这个示波器的制作,你将会了解很多东西,比如如何用运算放大器设计组合放大电路、高速AD转换器的应用、FIFO存储器的应用、AVR单片机SPI总线接口协议以及高分辨率点阵液晶显示器的驱动等内容,这些内容对于别的电子设计也是非常有用的。
第二篇:8课程设计—任务书—数字Butterworth滤波器的设计
课程设计名称:信号分析与处理课程设计
课程设计题目:数字Butterworth滤波器的设计
初始条件:
1. Matlab6.5以上版本软件;
2. 课程设计辅导资料:“Matlab语言基础及使用入门”、“信号与系统”、“数字信号处理原理与实现”、
“Matlab及在电子信息课程中的应用”等;
3. 先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)
1. 课程设计时间:1周;
2. 课程设计内容:数字Butterworth滤波器的设计,具体包括:基本Butterworth滤波器的设计,数字
高通、带通滤波器的设计,冲激响应不变法和双线性变换法的应用等;
3. 本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具体设
计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结,按要求进行实验演示和答辩等;
4. 课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括:
① 目录;
② 与设计题目相关的理论分析、归纳和总结;
③ 与设计内容相关的原理分析、建模、推导、可行性分析;
④ 程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结;
⑤ 课程设计的心得体会(至少500字);
⑥ 参考文献;
⑦ 其它必要内容等。
时间安排: 1周(第18周)
附——具体设计内容:
1. 低通巴特沃斯模拟滤波器设计。设计一个低通巴特沃斯模拟滤波器:指标如下:
通带截止频率:fp=3400HZ, 通带最大衰减:Rp=3dB
阻带截至频率:fs=4000HZ,阻带最小衰减:AS=40dB
Ha(s)1000 S1000 2. 模拟低通转换为数字低通滤波器已知一模拟滤波器的系数函数为
分别用冲激响应不变法和双线性变换法将Ha(s)转换成数字滤波器系统函数H(z),并图示Ha(s)和 H(z)的幅度相应曲线。分别取采样频率Fs=1000Hz和Fs=500Hz,分析冲激响应法中存在的频率混叠失真和双线性变换法存在的非线性频率失真等。
3.设计一个10阶的Butterworth滤波器,通带为100~250Hz,采样频率为1000Hz,绘出滤波器的单位脉冲响应。
8-1
第三篇:《数字信号处理》实验三用双线性变换法设计IIR数字滤波器
实验三 用双线性变换法设计IIR数字滤波器
一、 实验目的
1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法
2、掌握数字滤波器的计算机仿真方法
3、通过观察对实际心电图信号的滤波作用获得数字滤波的感性知识。
二、 实验内容及原理
1、用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。设计指标参数为在通带内截止频率低于0.2时最大衰减小于1dB在阻带内0.3频率区间上最小衰减大于15dB。
2、以0.02为采样间隔打印出数字滤波器在频率区间0/2上的幅频响应特性曲线。
3、用所设计的滤波器对实际心电图信号采样序列进行仿真滤波处理并分别打印出滤波前后的心电图信号波形图观察总结滤波作用与效果。 教材例中已求出满足本实验要求的数字滤波系统函数 31kkzHzH 3211212121kzCzBzzAzHkkk 式中 A0.09036 2155.09044.03583.00106.17051.02686.1332211CBCBCB
三、实验结果 心电图信号采样序列 0510152025303540455055-100-50050nxn心电图信号采样序列xn 用双线性变换法设计IIR数字滤波器一级滤波后的心电图信号 0102030405060-100-80-60-40-2002040ny1n一级滤波后的心电图信号 二级滤波后的心电图信号 0102030405060-100-80-60-40-2002040ny2n二级滤波后的心电图信号 三级滤波后的心电图信号 0102030405060-80-60-40-2002040ny3n三级滤波后的心电图信号 用双线性变换法设计IIR数
验字滤波器滤代波器的幅频响应曲线 码 00.050.10.150.20.250.30.350.40.450.5-50-40-30-20-10010w/pi20lgHjw滤波器的幅频响应曲线
四、实x-4-20-4-6-4-2-4-6-6-4-4-6-6-261280-16-38-60-84-90-66-32-4-2-48121210666400000-2-4000-2-200-2-2-2-20 n0:55 subplot111 stemnx. axis0 55 -100 50 xlabeln ylabelxn title心电图信号采样序列xn N56 A0.09036 20.09036 0.09036 B1 -1.2686 0.7051 B11 -1.0106 0.3583 B21 -0.9044 0.2155 y1filterABx n0:55 figure subplot111 stemny1. xlabeln ylabely1n title一级滤波后的心电图信号 y2filterAB1y1 n0:55 figure 用双线性变换法设计IIR数字滤波器subplot111 stemny2. xlabeln ylabely2n title二级滤波后的心电图信号 y3filterAB2y2 n0:55figure subplot111 stemny3. xlabeln ylabely3n title三级滤波后的心电图信号 A0.09036 20.09036 0.09036 B11 -1.2686 0.7051 B21 -1.0106 0.3583 B31 -0.9044 0.2155 H1wfreqzAB1100 H2wfreqzAB2100 H3wfreqzAB3100 H4H1.H2 HH4.H3 magabsH db20log10mageps/maxmag figure subplot111 plotw/pidb axis0 0.5 -50 10 xlabelw/pi ylabel20lgHjw title滤波器的幅频响应曲线
五、实验总结 双线性变换法的特点 对频率的压缩符合下列公式 11112zzTs sTsTz22 用双线性变换法设计IIR数字滤波器这样的变换叫做双线性变换。用双线性变换法来设计数字滤波器由于从s面映射到s1面具有非线性频率压缩的特点因此不可能产生频率混叠现象而且转换成的Hz是因果稳定的这是双线性变换法的最大优点。其缺点是w与之间的非线性关系直接影响数字滤波器频香逼真的模仿模拟滤波器的频响。 数字滤波器的输入和输出均为数字信号通过一定的运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分。数字滤波器可以通过模拟其网络传输函数进行实现。如图中所示滤波器对其高于截止频率的频段产生很高的衰减所得信号较之原信号剔除了高频的成分。
第四篇:数字钟的设计与制作 课程设计5
淮阴师范学院电子与电气工程系
课程设计报告
学生姓名 班
级 专
业 题
目
指导教师
2009 年 6 月
许青
学 号
240701084
07级2班 电子信息科学与技术 数字钟的设计与制作 陈华宝
电子技术课程设计报告
一、设计目的
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。 数字钟 ,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟,而且可以通过数字钟的制作进一步了解在制作中用到的各种中小规模集成电路的作用及使用方法。再者,由于数字钟包括组合逻辑电路和时序电路,通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.
二、设计要求 ㈠设计指标
(1)时间以12小时为一个周期; (2)显示时、分、秒;
(3)有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; (4)保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。 ㈡设计要求
(1)画出电路原理图;
(2)自行装配和调试,并能发现问题和解决问题;
(3)编写设计报告,写出设计与制作的全过程,附上有关资料和图纸及心得体会。
三、原理框图
1.数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。
图1 2.晶体振荡器电路
电子技术课程设计报告
晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。
图2
3.时间记数电路
一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。
秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降沿有效)与1HZ秒输入信号相连,QD可作为向上的进位信号与十位计数单元的CPA相连。
秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图 2.4所示,其中QC可作为向上的进位信号与分个位的计数单元的CPA相连。
图3
电子技术课程设计报告
图4
分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的QD作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的QC作为向上的进位信号应与时个位计数单元的CPA相连。
时个位计数单元电路结构仍与秒(或分)个位计数单元相同,但是要求,整个时计数单元应为24进制计数器,而不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行24进制转换。利用1片74HC390实现24进制计数功能的电路如图(d)所示。
图5二十四进制电路
另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。
4.译码驱动及显示单元电路
选择74LS47作为显示译码电路;选择LED数码管作为显示单元电路。由74LS47把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阳的方法连接的。
计数器实现了对时间的累计并以8421BCD码的形式输送到74LS47芯片,再由74LS47芯片把BCD码转变为十进制数码送到数码管中显示出来。
5.校时电路
数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,
电子技术课程设计报告
并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向上时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向下时,情况正好与上述相反,这时校时电路处于校时状态。
实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。
图6 带有消抖电路的校正电路
说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分
图7 6.整点报时电路
电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,发出报时电路报时控制信号。
当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,
电子技术课程设计报告
分别为
5、9和5,因此可将分计数器十位的QC和QA 、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。
报时电路可选74HC30来构成。74HC30为8输入与非门。
四、元器件
1.四连面包板1块 2.共阳七段数码管6个 3.网络线2米/人 4.74LS47集成块6块 5.CD4060集成块1块 6.74HC390集成块3块 7.74HC51集成块1块 8.74HC00集成块2块 9.74LS08集成块1块 10.10MΩ电阻5个 11.300Ω电阻6个 12.30p电容2个 13.32.768k时钟晶体1个 芯片连接图
1)74HC00D
图8 2)74LS08
图9
电子技术课程设计报告
3)74HC390D
4)74HC51D
4) CD4060
图10
图11
电子技术课程设计报告
图12 5)74LS74
图13
电子技术课程设计报告
6)74LS47
图14 2.面包板的介绍
面包板一块总共由五部分组成,一竖四横,面包板本身就是一种免焊电板。 面包板的样式是:
电子技术课程设计报告
图15 面包板的注意事项:
1.面包板旁一般附有香蕉插座,用来输入电压、信号及接地。 2.上图中连着的黑线表示插孔是相通的。
3.拉线时,尽量将线紧贴面包板,把线成直角,避免交叉,也不要跨越元件。 4.面包板使用久后,有时插孔间连接铜线会发生脱落现象,此时要将此排插孔做记号。并不再使用。
五、各功能块电路图
数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。
(一) 六进制电路
由74HC390、7400、数码管与74LS47组成,电路如图16。
U1A3123U2A12Com74HC00D74HC00DU5SEVEN_SEG_COM_KABCDEFGU3AIO1IO337126DADBDCDD513OAOBOCODOE121110915141QA1QB1QC567V1 32Hz 5V141INA1INB21CLRIO21QD74HC390D43~EL~BI~LTOFOGVCCIO45V74LS47将十进制计数器转换为六进制的连接方法
图16
电子技术课程设计报告
(二) 十进制电路
由74HC390、7400、数码管与74LS47组成,电路如图17。
ComU3SEVEN_SEG_COM_KU1AIO1141INA1INB21CLR31QA1QB1QC1QD5677126DADBDCDD513OAOBOCODOE12111091514ABCDEFGVCC5V74HC390D43~ELOF~BIOG~LT74LS47十进制接法测试仿真电路
图17
(三) 六十进制电路
由两个数码管、两74LS
47、一个74HC390与一个7400芯片组成,电路如图18。
74LS47
74LS47
图18
电子技术课程设计报告
(四) 双六十进制电路
由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位。
(五) 时间计数电路
由1个二十四进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与二十四进制电路相连即可,详细电路见图19。
VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12器分计数131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图19
2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告
(六) 校正电路
由74HC51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图20。
IO1VCC正常输入信号5V校正信号R1IO2U2C9108小时校正电路J110Mohm74HC00D注意:分校时时,不会进位到小时。U11111213910U2DKey = A12R210MohmIO313U2A8123时计数器IO574HC00D1123674HC00D正常输入信号校正信号R3U3A10Mohm12U2B456分计数器IO6IO44574HC00D74HC51D3J274HC00DKey = B分钟校正电路分校正时锁定小时信号输入R410MohmU3B456图中采用基本RS触发器构成开关消抖动电路,其中与非门选用74HC00;对J1和J2,因为校正信号与0相与为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态,当开关打向上时,情况正好与上述相反,这时电路处于校时状态。74HC00D数字钟设计-校时电路部分
图20
(七) 晶体振荡电路
由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图21。
图21
电子技术课程设计报告
六、总接线元件布局
整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。 其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。
电路的信号输入由晶振电路产生,并输入各电路。
七、电路原理总图
在原有的简图的基础上,按实际布局画了这张按实际芯片布局的接线图,如图22:
电子技术课程设计报告
VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12分计数器131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图22
2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告
八、总结
1. 实验过程中遇到的问题及解决方法
① 七段显示器与七段译码器的测量
把显示器与74LS74相连,第一次连接时,数码管没有显示数字,经检查发现是数码管未接地,接地后发现还是无法正确显示数字,用万用表检测后,发现是因芯片引脚有些接触不良,所以确认芯片是否接触良好比较重要。 ② 时间计数电路的连接与测试
六进制、十进制都没有什么大的问题,只是芯片引脚的老问题,只要重新插过芯片就可以解决了。但在六十进制时,按图接线后发现,显示器上的数字总是100进制的,而不是六十进制,检测后发现无论是线路的连接还是芯片的接触都没有问题。最后,重新检查电路连线时发现是粗心将线路引脚接错而造成的,改过之后,显示就正常了。
2.设计体会
(1)通过这次对数字钟的设计与制作,我了解了设计电路的程序,也让我了解了关于数字钟的原理与设计理念,设计一个电路要先仿真,仿真成功之后才能实际接线。
(2)学会了使用mutlism,protel.掌握了电路设计的基本步骤,提高了自己的动手实践能力。
(3) 通过这次学习,让我对各种电路都有了大概的了解,同时也让我更深刻的认识到实践的重要性,对于这些电路还是应该自己动手实际操作才会有深刻理解。
(4)在实际操作中往往由于自己的一些疏忽导致电路连接上存在一些问题,所以在实际操作中应十分细心和耐心才对,努力使自己在接线上不存在问题。
第五篇:毕业设计报告:数字钟设计与制作
《数字电子技术》课程设计报告
毕业设计报告:数字电子技术
题
目:
数字钟的设计与制作
专
业:电子
班
级:电子01(4)
学
号:01221187 姓
名:马小军
时
间:2004年5月28日— 2004年6月17日
电子信息学院
第 0
页
《数字电子技术》课程设计报告
一、设计目的
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.
二、设计要求
(1)设计指标
① 时间以12小时为一个周期; ② 显示时、分、秒;
③ 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; ④ 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; ⑤ 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。 (2)设计要求
① 画出电路原理图(或仿真电路图); ② 元器件及参数选择; ③ 电路仿真与调试;
④ PCB文件生成与打印输出。
(3)制作要求
自行装配和调试,并能发现问题和解决问题。
(4)编写设计报告
写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、原理框图
1.数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。
第 1
页
《数字电子技术》课程设计报告
(a) 数字钟组成框图
2.晶体振荡器电路
晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。
(b) CMOS 晶体振荡器(仿真电路)
第 2
页
《数字电子技术》课程设计报告
3.时间记数电路
一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。
秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。
秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图 2.4所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。
十进制-六进制转换电路
分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。
时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。利用1片74HC390实现12进制计数功能的电路如图(d)所示。
(d)十二进制电路
另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。
4.译码驱动及显示单元电路
选择CD4511作为显示译码电路;选择LED数码管作为显示单元电路。由CD4511把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阴的方法连接的。
计数器实现了对时间的累计并以8421BCD码的形式输送到CD4511芯片,再由451
1第 3
页
《数字电子技术》课程设计报告
芯片把BCD码转变为十进制数码送到数码管中显示出来。
5.校时电路
数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向下时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向上时,情况正好与上述相反,这时校时电路处于校时状态。
实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。
(f)带有消抖电路的校正电路
6.整点报时电路
电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。
当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,分别为
5、9和5,因此可将分计数器十位的QC和QA 、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。
报时电路可选74HC30来构成。74HC30为8输入与非门。
错误!嵌入对象无效。
四、元器件
1.四连面包板1块(编号A45) 2.镊子1把 3.剪刀1把
4.共阴八段数码管6个 5.网络线2米/人 6.CD4511集成块6块
第 4
页
《数字电子技术》课程设计报告
7.CD4060集成块1块 8.74HC390集成块3块 9.74HC51集成块1块 10.74HC00集成块4块 11.74HC30集成块1块 12.10MΩ电阻5个 13.500Ω电阻14个 14.30p电容2个
15.32.768k时钟晶体1个 16.蜂鸣器10个(每班) 1) 芯片连接图
1)74HC00D
2)CD4511
3)74HC390D
4)74HC51D
第 5
页
《数字电子技术》课程设计报告
2.面包板的介绍
面包板一块总共由五部分组成,一竖四横,面包板本身就是一种免焊电板。 面包板的样式是:
面包板的注意事项:
1. 面包板旁一般附有香蕉插座,用来输入电压、信号及接地。 2. 上图中连着的黑线表示插孔是相通的。
3. 拉线时,尽量将线紧贴面包板,把线成直角,避免交叉,也不要跨越元件。 4. 面包板使用久后,有时插孔间连接铜线会发生脱落现象,此时要将此排插孔做记号。并不再使用。
五、各功能块电路图
数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。
(一) 六进制电路
由74HC390、7400、数码管与4511组成,电路如图一。 错误!嵌入对象无效。
(二) 十进制电路
由74HC390、7400、数码管与4511组成,电路如图二。 错误!嵌入对象无效。
(三) 六十进制电路
由两个数码管、两4
511、一个74HC390与一个7400芯片组成,电路如图三。
第 6
页
《数字电子技术》课程设计报告
(四) 双六十进制电路
由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位,电路图如图四。
错误!嵌入对象无效。
(五) 时间计数电路
由1个十二进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与十二进制电路相连即可,详细电路见图五。 错误!嵌入对象无效。
(六) 校正电路
由74CH51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图六。 错误!嵌入对象无效。
(七) 晶体振荡电路
由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图七。
第 7
页
《数字电子技术》课程设计报告
(八) 整点报时电路
由74HC30D和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图八。 错误!嵌入对象无效。
六、总接线元件布局简图
整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。
其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。
电路的信号输入由晶振电路产生,并输入各电路。 简图如图九。
七、芯片连接总图
因仿真与实际元件上的差异,所以在原有的简图的基础上,又按实际布局画了这张按实际芯片布局的接线图,如图十。
八、总结
1. 实验过程中遇到的问题及解决方法
① 面包板测试
第 8
页
《数字电子技术》课程设计报告
测试面包板各触点是否接通。
② 七段显示器与七段译码器的测量
把显示器与CD4511相连,第一次接时,数码管完全没有显示数字,检查后发现是数码管未接地而造成的,接地后发现还是无法正确显示数字,用万用表检测后,发现是因芯片引脚有些接触不良而造成的,所以确认芯片是否接触良好是非常重要的一件事。
③ 时间计数电路的连接与测试
六进制、十进制都没有什么大的问题,只是芯片引脚的老问题,只要重新插过芯片就可以解决了。但在六十进制时,按图接线后发现,显示器上的数字总是100进制的,而不是六十进制,检测后发现无论是线路的连通还是芯片的接触都没有问题。最后,在重对连线时发现是线路接错引脚造成的,改过之后,显示就正常了。
④ 校正电路
因上面程因引脚接错而造成错误,所以校正电路是完全按照仿真图所连的,在测试时,开始进行时校时时,没有出现问题,但当进行到分校时时,发现计数电路的秒电路开始乱跳出错。因此,电路一定是有地方出错了,在反复对照后,发现是因为在接入校正电路时忘了把秒十位和分个位之间的连线拿掉而造成的,因此,在接线时一定要注意把不要的多余的线拿掉。
2. 设计体会
通过这次对数字钟的设计与制作,让我了解了设计电路的程序,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真仿真成功之后才实际接线的。但是最后的成品却不一定与仿真时完全一样,因为,再实际接线中有着各种各样的条件制约着。而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功。所以,在设计时应考虑两者的差异,从中找出最适合的设计方法。 通过这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。
3. 对设计的建议
我希望老师在我们动手制作之前应先告诉我们一些关于所做电路的资料、原理,以及如何检测电路的方法,还有关于检测芯片的方法。这样会有助于我们进一步的进入状况,完成设计
第 9
页