范文网 论文资料 非线性双方程湍流模型(精选)

非线性双方程湍流模型(精选)

非线性双方程湍流模型第一篇:非线性双方程湍流模型K-e湍流模型K是紊流脉动动能(J), ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大, ε 越大意味着湍流脉动长度和时间尺度越小,它们是。

非线性双方程湍流模型

第一篇:非线性双方程湍流模型

K-e湍流模型

K是紊流脉动动能(J), ε 是紊流脉动动能的耗散率(%)

K越大表明湍流脉动长度和时间尺度越大, ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。

但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。

在入口界面上设置的K和湍动能尺度对计算的结果影响大,

至于k是怎么设定see fluent manual "turbulence modelling"

作一个简单的平板间充分发展的湍流流动,

基于k-e模型。

确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!

k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;

在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?

Mepsilon=Cu*k*k/Vt%

这些在软件里有详细介绍。陶的书中有类似的处理,假定了进口的湍流雷诺数。

fluent帮助里说,用给出的公式计算就行。

k-e模型的收敛问题!

应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?

用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.

在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦

合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负

值,请问是不是一种错误现象?

如果是错误现象一般怎样避免。另外处理湍动能产生项采

用什么样的差分格式最好。而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负

值,请问有什么办法克服这种现象。

你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。

这可能是因为你采用的数值格式的问题,一般计算程序对k方程都要做一定处理,

以保证k的正定。

比如,强制规定源项与0的关系,以使数值计算稳定。

就ke模型而言。

它是problem dependent.对简单的无弯曲无旋转无...的湍流问题,它能算而且能给出好的结果,但对复杂的流动问题,它就不能使用了。

出现负的ke不仅仅是计算格式的问题,

更重要的是模型问题,没有谁能证明ke模型在任何流动问题中都能保证ke是正的。

有这么一些办法避免ke出现负值

1。对K=ln(k)和E=ln(e)求解,问题:壁面ke=0难处理,

2。先用层流计算500步,然后再用ke算

3。各种强制限制办法

4。源项局部线性化

5。算到一定程度,如果k值趋势对了,就干脆不求ke方程

第二篇:多元线性回归模型实验报告计量经济学

实 验 报 告

课程名称金融计量学 实验项目名称多元线性回归模型

班级与班级代码 实验室名称(或课室)

专业

任课教师 xxx

学号 :xxx

姓名 :xxx 实验日期:2012 年 5 月 3 日

广东商学院教务处制 姓名 xxx 实验报告成绩 评语 :

指导教师 (签名)

年月日

说明:指导教师评分后,实验报告交院(系)办公室保存

多 元线性回归模型

一、实验目的 通过上机实验,使学生能够使用 Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。

二、实验内容 (一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值 Y,资产合计 K 及职工人数 L 进行回归分析。

(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法 (三)根据实验结果判断中国该年制造业总体的规模报酬状态如何? 三、实验步骤 (一)收集数据 下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值 Y,资产合计 K 及职工人数 L。

序号 工业总产值 Y(亿元)

资产合计 K(亿元)

职工人数 L(万人)

序号 工业总产值 Y (亿元)

资产合计 K(亿元)

职工人数 L(万人)

1 3722.7 3078.22 113 17 812.7 1118.81 43 2 1442.52 1684.43 67 18 1899.7 2052.16 61 3 1752.37 2742.77 84 19 3692.85 6113.11 240 4 1451.29 1973.82 27 20 4732.9 9228.25 222 5 5149.3 5917.01 327 21 2180.23 2866.65 80 6 2291.16 1758.77 120 22 2539.76 2545.63 96 7 1345.17 939.1 58 23 3046.95 4787.9 222 8 656.77 694.94 31 24 2192.63 3255.29 163 9 370.18 363.48 16 25 5364.83 8129.68 244 10 1590.36 2511.99 66 26 4834.68 5260.2 145 11 616.71 973.73 58 27 7549.58 7518.79 138 12 617.94 516.01 28 28 867.91 984.52 46 13 4429.19 3785.91 61 29 4611.39 18626.94 218 14 5749.02 8688.03 254 30 170.3 610.91 19 15 1781.37 2798.9 83 31 325.53 1523.19 45 16 1243.07 1808.44 33 表 1 (二)创建工作文件(Workfile)。

1、启动Eviews5,在主菜单上依次点击FileNewWorkfile(如图),按确定。

2、在弹出的对话框中选择数据的时间频率(本实验为序列数据),输入数据数为31(如图1),然后点击OK(如图2)。

(图 1)(图 2)、(三)输入数据 1、在 Eviews 软件的命令窗口中键入数据输入/编辑命令:DATAYKL,按 Enter,则显示一个数组窗口(如图)。

2、分别在Y、K、L列输入相应的数据并以group01命名保存(如图):

(四)、回归分析 1、在经济理论指导下,设定如下的理论模型:

2、运用OLS估计模型 经对数转换,式  e L AK Y 可变换对数形式如下:

3、对表1的Y、K、L的数据进行对数转换,得新的数据如表2所示:

序号

序号

1

17 8.222204 8.032107 4.727388 2

18 7.274147 7.429183 4.204693 3

19 7.468724 7.916724 4.430817 4

20 7.280208 7.587726 3.295837 5

21 8.546616 8.685587 5.78996 6

22 7.736814 7.47237 4.787492 7

23 7.204276 6.844922 4.060443 8

24 6.487334 6.543826 3.433987 9

25 5.913989 5.895724 2.772589 10

26 7.371716 7.828831 4.189655 11

27 6.424399 6.881134 4.060443 12

28 6.426391 6.246126 3.332205 13

29 8.395972 8.239042 4.110874 14

30 8.656785 9.069701 5.537334 15

31 7.485138 7.936982 4.418841 16

表2 4、对表2经对数转化后的数据进行相关性分析 ①重复数据输入步骤,输入取对数后的数据如图:

②在弹出的窗口中选择ViewGraphScatterSimpleScatter按确定,得取对数后的Y、K、L三者之间关系的散点图,结果如下:

③通过对以上散点图的观察可以看出,取对数后的K、L的联合值对取对数后的Y的值有着显着的线性影响。

5、在 Eviews 主窗口中点击 QuickEstimateEquation,在弹出的方程设定框内输入模型:log(y)clog(k)log(l)(如图):

再点击确定,系统将弹出一个窗口来显示有关估计结果(如图)。

由图显示的结果可知,样本回归方程为:

Y ln =1.154+0.609 K ln +0.361 L ln

(1.59)(3.45)(1.75) 其中 8099 .02 R ,2R =0.7963,F=59.66 4、对以上实验结果做 t 检验分析:

给定显着性水平 5%,自由度为(2,28)的 F 分布的临界值为34 .3 28 2 (05 .0 )

, F ,因此总体上看, K ln , L ln 联合起来对 Y ln 有着显着的线性影响。在 5%的显着性水平下,自由度为 28 的 t 分布的临界值为048 .2 ) 28 (05 .0 t,因此, K ln 的参数通过了该显着性水平下的 t 检验,但L ln 未通过检验。如果设定显着性水平为 10%,t 分布的临界值为701 .1 ) 28 (05 .0 t ,这时 L ln 的参数通过了显着性水平的检验。

2R =0.7963 表明,工业总产值对数值的 79.6%的变化可以由资产合计的对数与职工的对数的变化来解释,但仍有 20.4%的变化是由其他因素的变化影响的。

(五)参数的约束检验 由以上的实验结果可以看出, 1 97 .0      ,即资产与劳动的产出弹性之和近似为1,表明中国制造业在2000年基本呈现规模报酬不变的状态。因此,进行参数的约束检验时,提出零假设为0H :1    。

如果原假设为真,则可估计如下模型:

1、在 Equation 窗口选择 proc/Specify/Estimate 在弹出的窗口中输入 log(y/l)clog(k/l)如图所示:

1 按确定,所得结果如下:

容易看出,该估计方程通过了 F 检验与参数的 t 检验。

2、对规模报酬是否变化进行的分析 由上面两个实验可以得到 0703 .5 URSS , 0886 .5 RRSS 。在原假设为真的条件下有:

 ) 1 2 31 (1 ) (UU RRSSRSS RSSF28 0703 .50703 .5 0886 .5 =0.1011 在 5%的显着性水平下,自由度为(1,28)的 F 分布的临界值为 4.20。因为 0.1011<4.20,所以不拒绝原假设,表明 2000 年中国制造业呈现规模报酬不变的状态。

3、运用参数约束条件 12 1    对上面假设模型进行检验 打 开 eq01 方 程 对 象 窗 , 点 击ViewCoefficientTestsWaldCoefficientRestrictions…,在 Waldtests窗口设定参数约束条件:c(2)+c(3)=1。再按 OK,结果如下图:

由以上实验结果可知,我们仍然不拒绝原假设,原假设为真,即中国该年的制造业总体呈现规模报酬不变状态。

四、实验结论 通过上面实验可以看出,中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的资产合计 K 和职工人数 L 的联合对数对工业总产值 Y 的对数有着显着地线性影响。但并非全是由 K、L 影响,还有 20.4%的变化时由其他因素影响的。在规模报酬的分析中可以看出,国制造业在2000 年基本呈现规模报酬不变的状态。

第三篇:湍流怎么造句

湍流拼音【注音】: tuan liu

湍流解释

【意思】:(tuānliú)<书>流得很急的水。

湍流造句:

1、湍流将紧挨着球的曲面,从而减少足球的空气阻力。

2、我们认为一个中等或尾流结构可能存在,现在我们可以证明有大群结构位于湍流非常中心的位置。

3、虽然其结构,被称为壁结构,已经在湍流的边缘被找到,但是一个难以捉摸的中等或尾流结构至今从未被发现。

4、在汹涌的湍流中,每个人在他们内心都应该有指导他们做出决定的思想。

5、研究小组现正期找到类似的结构,如果它们存在于其它的湍流流动的案例中。

6、由于湍流而快速变化的折射在视线中会影响到光的不同颜色,这种影响也各不相同,一般会给恒星产生一种闪烁的效果。

7、这可能包括工作机械零件,涉及血液流动的医疗,和在空中,海上和公路旅行中的湍流各个方面。

8、当鲨鱼在水中游动时,水流从鳞屑的沟槽中流过有助于减少湍流,保持其流线型的泳姿。

9、《第十三个故事》情节跌宕起伏,就像湍流的河水,充满不可预知的漩涡和大浪,让读者无法逃避。

10、如果你踢球的力量足够大,使得球表面的气流形成湍流,则阻力会很小,你很可能踢成高射炮。

11、实际上,上周经历很多湍流的航班就是沿着该高压边缘。

12、然而,当气流为湍流时,边界层维持时间较长。

13、它将测定太阳磁场形成以及如何导致太阳剧烈活动,比如太阳风湍流。

14、但如果你能大力踢球使其获得一个足够快的速度,使它表面的气流形成湍流,足球将受到较小的制动力(见上图)。

15、当球在空中速度减慢时,周围的气流从湍流变为稳定的层流。

16、这架69磅重的飞行器由一位希腊奥林匹克自行车手所驱动,在靠近圣托里尼的海岸时还遭遇到了空中湍流的袭击。

17、这一新发现的湍流状态是由大量存在于一种湍拎干结构中的元素组成的,而且已经被该研究组描述为一块“打结的漩涡挂毯”。

18、球的表面流动的空气形成湍流,这使得球的阻力相对较低。

19、混沌理论先驱BenoitMandelbrot发现尼罗河每年的洪水泛滥程度符合这个性质,音乐和空气湍流中也有这个性质。

20、现在,我们确信我们所拥有的湍流经验可以帮助消费者克服困难,并能帮助商业的成功。

21、他们站在湍流的汹涌的河水中间,束手无策,天完全黑下来。他们离河岸还有25英尺之远。

22、对于大多数危险的湍流,我们花费了更多的时间来保障安全,但是只有少数情况下,这些措施才起到重大的作用。

23、从冰川包覆的山巅冲击而下的湍流携下一种具有很高价值的玉石,毛利人将这种硬质半透明的石头雕刻成为珠宝和刀刃,既是工具也可以作为武器。

24、然而,处女是简单化的,什么东西都显现在表面一目了然,天蝎却更加注重生活表象下的湍流。

25、在绵延湍流中,享受尼泊尔宁静、与世隔绝的乡间景观。

第四篇:非线性编辑心得

非 线 性 编 辑 结 课 心 得

学院:美术学院姓名:赵素敏班级:数码设计二班学号:091064015

时光飞逝,在过去的一学年生活中,我们在漫漫的负笈求索路上更进一步,掌握了更多的知识与技能。

光阴荏苒,在溜走的那青春故事里,我们在师长的谆谆教导下日趋成熟,完成了更多的人生冒险与历练。

岁月如歌,在消散的那似水回忆间,我们在用自己的汗水与努力浇灌,让人生路旁的修养和内涵更加茁壮。

弹指一挥间,我们将要告别这匆匆而逝的2010年,在年终岁末我们回顾过往,为的是给这即将到来的下一个阶段做出更准确,更合理的规划。一个学期的学习,一个轮回的反复,在四年的大学生活中,我们不断地汲取未来人生路上可能所需的技能,夯实基本的专业基础,丰富自己的生活阅历。而细细体会中,我在本学期的非线编课程上,获益良多。

21世纪是一个数字化的时代,是一个多媒体的社会,高速运转的资讯大量充斥着我们的生活,各类信息资源俯拾皆是。作为这个时代的一份子,融入社会并被这个社会所接受,是我们多年的学习成果的一个很好体现。就今下现状之一的现代企业用人要求越来越来高,条件越来越苛刻而言,熟练地掌握并运用一种设备或软件不失为我们明天就业的一个有利砝码,非线性编辑的课程学习恰恰就为我们提供了这个宝贵的机会。

科学技术发展到今天,随着越来越多的以往被我们视之为不可能的事情变成现实,人们越发相信智慧的力量是无穷的,人类的潜能是无尽的。一个支点撬动一个地球的神话就在眼前,借助机器的作用,我们轻松地完成了一桩又一桩以前繁复不可想象的工作,非线性编辑软件的诞生,则正好解决了视频制作的这一大难题。在以前,使用传统的编辑方法,为制作一个十来分钟的节目,常常需要工作人员面对四五十分钟的素材带,反复审阅比较、筛选,然后将所选镜头编辑组接,进行必要的转场、特技处理。这之中包含着大量的机械重复性劳动。而在非线性编辑系统中,大量的素材都存储在硬盘上,可随时调用,不必费时费力,只要轻轻滑动鼠标,每一帧画面的定格,搜索易如反掌,既灵活方便,又快捷省时。

网络化的发展使得计算机在今天已走进千家万户,而非线性编辑系统可充分利用网络方便的传输数码视频,实现资源共享,还可利用网络上的计算机协同创作。非线性编辑技术的出现和应用,让我们这些普通的大众也可随心所欲的走近原本神秘的电影,电视视频创作,闲暇之余可以表达自己的情怀、审视社会、挥洒想象,在更为广阔的互联网世界中分享自己抑或是他人的喜怒哀乐。

在本学期的非线编课上,我们很幸运的学习了怎样使用Premiere Pro软件,课堂上,老师倾囊相授的为我们详细讲解使用的各种细节,注意要点,又躬身践行的反复示范。课后在完成上课时老师有针对的留下的练习后,我们的使用技术在不知不觉中有了长足的进步和令人惊喜的进展。在期末的作业实践中,大家都满意的发现,原来在一学期的学习后自己对于非线编系统软件的认识及使用竟有了这么多的收获。不仅可以自己修改DV短片,还可以独立的制作MV视频,大家彼此交换着各自的硕果,一时更是感慨万千。

“往事像落日照耀的河面,我拣闪光的留在心中。”一个学期的课程结束之时,我们总会有或多或少的得失,在迈向成长的路上,这些永远都是宝贵的财富,回首来时的漫漫时间长流,如果可以用软件来编排,我想在学校汲取知识的养分,与老师同学共浴知识的海洋一定不失为一份令人感动的作品。

展望前面未知的旅途,我们总有一天会因自己今天所学到的技能而感到骄傲,会因那份未知的可能体会到小小的成就,会因老师今天无私的付出而为自己拓宽道路,会感激昨日所得成为今日的基石。

第五篇:非线性理论学习心得

非线性理论由一阶微分方程开始,通过讨论解的存在性、求解办法、解的行为特征等,经由微分方程组、矩阵形式的微分方程,讨论了由微分方程表示的系统对应的解的行为,给出了在给定微分方程时,结合初始条件,分析系统走向的方法。

实际中时变的现象或者过程的数学描述,依赖于微分方程。当这个过程有不止一个影响因素时,这个数学模型表现为多变量的微分方程组。如果这几个影响因素之间也相互影响,模型表现为一个有耦和的微分方程组,即一个变量的微分由包含其他变量的函数表示。根据微分方程的形式,可以对系统做出划分,这些划分可以初步地表现系统的一些性质,比如,用自治微分方程表示的系统,其中的变量变化速度与时间无关,即这是一个没有加速度的系统,所有的变量以各自恒定的速度变化,对每个变量,速度只在空间上有差别。

一个微分方程表达的数学模型是否可以真实得反映一个系统,首先的判断是方程是否有解,因为一个确定无解的方程对描述实际的系统没有意义。这就是解的存在性判断。在有解的前提下,还需要判断解的唯一性,对某个给定条件,是否可以确定唯一的解,或者至少是否能在某个局部区域得到唯一解,这是可以根据初始条件明确推测系统行为的前提。针对每一类方程(按照形式或其中某部分的形式分类),都有相应的存在——唯一性定理,可以作为判断的依据。这些方程的分类彼此之间也有涵盖,所以这些存在唯一性定理也可以通过一些相应的倒换或条件变化彼此联系。

在确定了解的存在性之后,微分方程的第二个重要问题是求解。简单的微分方程可以直接求出解析解。从一般的一阶微分方程起,每个类型的方程对应一类相对固定的解法,高阶的微分方程能够写出解析解的不多,针对这些类型也有相应的求解公式。耦合系统的方程求解比较复杂,可以化为无耦合系统求解后再转化为原来坐标下的藕和系统解。

不能给出解析解或解析解过于复杂的系统,有两种处理办法。一是数值求解。另一种是借助几何的方式定性分析解的行为。对不少实际问题,这种定性分析都可用满足我们了解系统的期望,通常借用的手段是相图、分叉图,结合奇点的类型和稳定性分析,可以得到关于系统变化方式、走向、平衡状态和稳定性的信息。

在历史上,随着数学和科技的发展,人们对自然的认识、把握、控制能力增强,前人们一度认为,如果根据系统足够多的信息给定系统的模型,结合系统在这些点的值,就可以完全掌握这个系统的变化,准确的回溯这个系统的历史,并且预言它在今后任何时间点的表现。从这个观点上看,世界不但是可知、绝对可知的,而且是完全确定的,一个过程一旦开始,在不引入也不减少影响因素的情况下,就会经由唯一确定的变化过程,导向唯一确定的结果。并且,即使这些因素发生了变化,那么仅仅是增加了系统表达的复杂程度,由于所有的过程都是可知的,因此这些因素的变化和对系统的影响也可以被确定。也就是说,即使在系统运行的中途,影响因素的数量发生了变化,系统会偏离之前的运行轨道,但它的全部轨迹仍然是完全可知的,系统仍然可以被准确的回溯和预言。

但是数学更新的发展告诉我们的是,这样的设想很可能并不会发生。除去现实中影响因素的复杂性和不确定性,即使确定了某个系统的影响因素和数学模型,这个系统也可能不仅有多于一种的变化方向,而且这个变化可能完全无法预知。一个确定系统的结果很可能不是确定的,而是一系列不确定性的合作用,系统实际的运行轨迹,是在某个程度的确定性之上的,类似随机变化的过程。“某个程度的确定性”允许我们对系统的发展做出推测,并且我们对于系统的了解越多,这个推测与系统实际轨迹的符合就可能越好;但是“随机过程”同时表明,这个推测的成立是有条件、有范围的、有程度的。

混沌是确定的非线性动力系统中出现的类似随机的现象。它不考虑系统本身的随机项或随机系数,由确定的动力系统出发,反映的是当初值产生微小变化时,系统长期运动的无法预测,即系统对初值的依赖十分敏感。在这种条件下(确定性系统),系统的短期行为仍然是准确可知的,因此它的长期运动虽然不可预测,但是这种不可预测有潜在的规律,也就是说,虽然系统有无数可能的混乱的轨道,但是它们是有序的,仍然遵循一定的规律。

就混沌体现的系统对初值的敏感依赖来说,混沌反映的不是确知某点信息时,系统由随机因素导致的不确定性,而是对于系统在某点的状态,当我们的认知(测量等)跟真实值存在一个微小误差的时候,由这个小误差导致的系统长期行为的不确定。它反映的问题是,如果系统本身是确定的,实测值的误差会造成系统的不可知。它跟随机因素造成的不确定性的区别在于,由于系统是由明确方程给出的,如果能够得到某点处的真实值,就可以通过这个值预知系统的行为,而物理测量值跟真实值总是存在误差,这个误差使得带入运算的初值根真实的初值有小的变化,虽然这个测量值仍然可能从方程中导出确定的结果,但是长期来看,这个结果跟真实情况的差别无法估计。

由此,一个真实系统的不确定性是有两个方面的因素造成的,一是系统本身的随机性,这使我们不能得出一个关于系统变化的确定性方程;另一方面是对于测量误差的敏感性,对于一个确定方程表达的复杂系统,即使能够把误差限制在一个可确定的小范围内,得到的长期结果也会有无数可能性,并且很可能无法判断哪个结果会跟实际值最接近。

一个真实系统不能被完全掌握,但也并不是完全不可知。就确定性方程表达的系统来说,虽然误差对长期结果有很大影响,但在短期上,仍然可以做出基本准确的预测;另外,长期结果的不确定性中还蕴含有一定的规律,这也可以让我们了解长期结果的某些信息。确定方程的非线性系统研究,对于我们了解世界的能力,非常重要。

上一篇
下一篇
返回顶部