数学课标解读
第一篇:2011年版数学课标解读
2011年版小学数学课程标准解读
(张丹教授发言原稿)
2011年12月28日教育部正式发布义务教育课程标准(2011年版),并于2012年秋季开始执行。数学课程标准(2011年版)发布后全国的数学教师掀起一股学课标、研课标、论课标的热潮,在学习中老师们还存在不少困惑,亟需课程标准修订组的专家为我们答疑解惑。
张丹,教师教育数理学院学术委员会主任,北京教育学院数学系教授,教师教育数理学院院长。她是国家义务教育数学课程标准和高中数学课程标准的核心组成员,也是课程标准修订核心组成员,是新世纪小学数学教材副主编。自己独立编著或与他人合作著有《小学数学教学策略》、《新课程数学教学研究与资源丛书“统计与概率”》、《数学课程设计》、《新课程理念与初中数学课程改革》等七部,及各种论文三十余篇
(下面是张丹教授在某教师进修学校讲课的发言原稿,供大家共同学习。) 各位老师:
晚上好。非常荣幸能和老师们共同就新课程标准进行讨论,也是自己的一些学习体会,不一定正确,供大家参考。
课程标准从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。今天主要介绍课程目标、核心概念和课程内容的变化。
首先看课程目标。《标准》与《实验稿》一样,明确了学生在义务教育阶段的发展应该是多方面的。
进一步,《标准》在《实验稿》基础上,明确提出了获得必需的基础知识、基本技能、基本思想、基本活动经验;在分析和解决问题的基础上,明确提出了增强发现和提出问题、分析和解决问题的能力,这些无疑是巨大进步。
同时,《标准》还对一些目标进行了完善,比如对于学习习惯,明确提出了应该培养的学习习惯是:认真勤奋、独立思考、合作交流、反思质疑。
将双基拓展为四基,首先体现了对于数学课程价值的全面认识,学生通过数学学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。同时,新增加的双基,特别是基本活动经验更加强调学生的主体体验,体现了以学生为本的基本理念。
提出基本思想、基本活动经验的最重要的原因,是要切实发展学生的实践能力和创新精神,特别是创新精神。实际上,一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。其中,创新意识和创新能力的形成,不仅仅需要必要的知识和技能的积累,更需要思想方法、活动经验的积累。也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。
正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。”
对于数学活动经验的内涵,目前学者们的观点并不统一。这里介绍几个。
张奠宙指出:“数学经验,依赖所从事的数学活动具有不同的形式。大体上可以有以下不同的类型:直接数学活动经验(直接联系日常生活经验的数学活动所获得的经验)、间接数学活动经验(创设实际情景构建数学模型所获得的数学经验)、专门设计的数学活动经验(由纯粹的数学活动所获得的经验)、意境联结性数学活动经验(通过实际情景意境的沟通,借助想象体验数学概念和数学思想的本质)。”
徐斌艳教授认为:我们还可以将基本活动经验进一步细化,它包括基本的数学操作经验;基本的数学思维活动经验;发现问题、提出问题、分析问题、解决问题的经验。
孔凡哲教授认为:““基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。”
本人认为,无论大家的观点如何,有几点是共同的: 第一,基本活动经验建立在生活经验基础上。 第二,是在特定数学活动中积累的。 第三,其核心是如何思考的经验。
第四,最终帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。 这里就有几个关键词:学生现实、数学活动、思考和反思。特别要设计好的数学活动。 这里列举两个例子。
第一,数数活动。比如“数数”的活动,仔细思考,在这个活动中,学生可以对自然数的基数意义和序数意义有所体会,可以体会一一对应的原则。不仅仅是对于数的认识,学生在数数过程中还为
数的比较大小,加法(往后数)、减法(往前数)、乘法(几个几个的往后数),除法(几个几个的往前数),甚至是数排列的规律等奠定了丰富的经验。
第二,发去北师大五年级图形面积的第一节课。
在这个活动中,学生将在比较图形面积的活动中积累比较方法的经验:数面积单位、通过平移旋转轴对称过后的两个图形的面积是相等的、图形的割补、图形的拼接等。
所以,对于一线老师,我觉得有三件事情是值得做的: 第一,积累好的案例。
第二,认真地研究学生。学生在面对一个问题时他们是如何思考的,其中是否存在着经验。 第三,探索经验形成的途径。一般说来,要经历:“经历、内化、概括、迁移”的过程。首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。
这里反思和迁移是重要的。比如,我在国外教材中看到过这样的问题:”今天你学习的方法在以前哪里用过?今后可能用到什么地方“。这样的问题就是在帮助学生实现迁移。
下面,谈谈基本思想。
在课程标准解读中,提出了三个基本思想:抽象、推理、模型。
人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科; 通过推理,进一步得到更多的结论,促进数学内部的发展;通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。
比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。
笔者认为基本思想这一层面是数学思想的最高层面。
处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。
在数学思想之下统领的还有一些具体的方法。
对于教师,我认为首先要对数学基本思想要熟悉,心里有这根弦。作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。
限于篇幅和时间,这里不好列举大的案例。感兴趣的老师,我最近要在东北师范大学出版社出版一本对于课程标准的解读,上面有比较丰富的一线老师们的案例。
下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。
对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。
下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。
对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。
有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。
学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。
有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。
学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。
并且他们对于“小数和自然数一样也是无限大的吗”这一问题进行了讨论,下面是片段: 生1:我觉得是无限大的。
师:说说你的理由?能举个例子吗?
生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是„„一直可以再多,谁也不知道到底有多大。
生3:我觉得自然数有多大,小数就有多大。因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。
生4:我补充,1亿加上0.1就比1亿大了。
生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。 (大家都表示同意)
这里特别有两句话,提醒老师们注意:
第一,启发学生思考的最好的办法是教师与学生一起思考。
教师要能暴露自己的思考路径,教学中为什么要提出这些问题供大家思考,遇到情境可以从哪些方面提出问题,遇到这些问题后应该从哪些角度来分析,解决了这个问题又可以提出哪些新的问题。
第二,要鼓励学生”从头到尾“的思考问题。这句话是史宁中教授的,我觉得很形象。
比如,小学中也有很多例子,比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。学生就没有“从头思考”,为什么要用周长去除以直径?
这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能可以到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。
那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。
这个例子,我昨天在家里和我的儿子试了试,他是完全可以接受的。进一步,我又鼓励他思考,接着要想什么。
他说,要想为什么我测了以后不是3倍多,为什么数学家就能得到这么准确的值。 还可以问,为什么是3倍多而不是2倍多。 多么可爱的孩子。
时间的关系,下面我们进入到核心概念的讨论。
《标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
核心概念反应了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有一些是新增加的:运算能力、模型思想、几何直观、创新意识;
有一些是名称或内涵发生较大变化的:数感、符号意识、数据分析观念;
有一些是保持了原有名称,基本保持了原有内涵:空间观念、推理能力、应用意识。 进一步,这10个核心概念可以分成三层。
第一层,主要体现在某一内容领域的核心概念。数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;
第二层,体现在不同内容领域的核心概念,包括几何直观、推理能力和模型思想;
第三层,超越课程内容,整个小学数学课程都应特别注重培养学生的应用意识和创新意识。 1.数感
《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。
《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。 《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。 数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。
比如,曾经有一个例子,一位学生看见某一博物馆的介绍资料中提到“7000平方米森林中生活着两只东北虎”时,发现了其不合理处,原来应该是“7000平方千米森林中生活着两只东北虎”。
数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。
数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。
有关估算,我下面还要谈到,这里不赘述了。
由上面对于数感的理解不难看出,发展学生的数感,需要创设情境建立起抽象的数和现实中的数量之间的关系;需要学生对于单位数量(比如1平方米)有比较准确的把握;需要能从多种角度来表示一个数,比如,0.25就是1/4;还需要对数之间的大小关系有所感悟,比如0.49比1/2小但很接近,1.3介于1和1.5之间。
2.运算能力
如前所述,运算能力是《标准》新增加的核心概念。
《标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题”。
从上面的表述中不难看出,运算能力首先是会算和算正确;而会算不是死记硬背,要理解运算的道理,还要寻求合理简洁的运算途径解决问题等。
3.符号意识
首先,《标准》将“符号感”更名为“符号意识”,更加强调学生主动理解和运用符号的心理倾向。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律。这一条强调了符号表示的作用。
知道使用符号可以进行运算和推理,得到的结论具有一般性。这一条,强调了“符号”的一般性特征。
因为用数进行的所有运算都是个案,而数学要研究一般问题,一般问题需要通过符号来表示、运算和推理。因此一方面符号可以像数一样进行运算和推理,另外通过符号运算和推理得到的结论是具有一般性的。
4.空间观念
除了将《实验稿》中最后一条独立为另一个核心概念“几何直观”外,《标准》对于“空间观念”的阐述基本保持了原来的说法。
5.几何直观
几何直观是《标准》中新增的核心概念,主要是指“利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用”。
6.数据分析观念
《标准》将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。
进一步,“数据分析观念”更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。
7.推理能力
《标准》和《实验稿》一样,强调了“获得数学猜想——证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。
需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
8.模型思想
《标准》首先说明了模型思想的价值,即建立了数学与外部世界的联系。
小学阶段有两个典型的模型“路程=速度×时间”、“总价=单价×数量”,有了这些模型,就可以建立方程等去阐述现实世界中的“故事”,就可以帮助我们去解决问题。
《标准》还进一步阐述了建立和求解模型的过程,这一过程的步骤可用如下框图来体现:
限于时间关系,需要进入到第二阶段,讨论了,第一阶段先讲这些,抱歉。
讲空间与图形改为图形与几何,首先点明了这部分内容的研究对象——图形,既包括立体图形也包括平面图形。
同时,《标准》分为了“图形的认识”、“测量”、“图形的运动”、“图形与位置”等四个线索,实际上是从不同角度刻画图形,包括图形的形状、大小、运动和位置。
同时,这四个线索也体现了研究几何的几种方法:综合推理、度量、变换和坐标。在运用多种方法研究的过程中形成了概念、性质等体系,也就是“几何”的内容。
简单说,图形是几何的研究对象。 再回答一个,删减的内容:
对于数与代数,《标准》在这部分的基本结构没有变化,只是在一些局部做了调整或修改。主要包括:
1.明确了在第一学段“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小”,在第二学段“了解自然数”。实际上,目前在小学教材中也包括了这些内容。
2.某些表述更加清晰、准确。比如将“会比较小数、分数和百分数的大小”改为“能比较小数的大小和分数的大小”。
3.增加了“知道用算盘可以表示多位数”。只要求知道算盘上是如何表示多位数的,感受算盘作为我国重大发明的意义。
插一个问题,算法多样化并没有弱化,在课程标准中,仍谈提出了”经历和他们交流各自方法的过程“,就是鼓励算法多样化。
对于图形与几何,《标准》在这部分的基本结构没有变化,只是在一些局部做了调整或修改。主要包括:
1. 在第二学段,去掉了“了解两点确定一条直线和两条相交直线确定一个点”,放入了第三学段。 2. 进一步明确了“观察物体”的要求。
《标准》对于统计内容做了较多调整,使三个学段内容学习的层次性更加明确。
将第一学段的统计图、平均数的学习移到了第二学段,将第二学段的中位数、众数移到了第三学段。这样做有三个原因,一是使三个学段的层次更加清晰;二是明确统计内容的学习重要的是数据处理过程的经历、数据分析观念的培养,而不仅仅是统计知识的学习。因此,在第一学段鼓励学生用自己的方式(文字、图画、表格等)呈现整理数据的结果,虽然从知识上看减少了,但从要求和标准上提供的案例来看,对于数据分析观念的体会并未减少。
另外,去掉“初步体会数据可能产生误导”的要求,在小学阶段还是强调从正面体会数据分析的作用。
对于统计内容回归传统,这种认识是不正确的。实际上,《标准》更加解释了统计的本质:数据分析,强调通过数据分析做出决策,这点和《实验稿》是相同的。
只是知识上稍有调整,思想和观念上没有降低,。 今年九月份,起始一年级开始使用新教材。
对于中位数、众数等,一定要注意数据分析观念的内涵之一:尽可能多地从数据中提取有用的数据,并且能够根据问题的背景选择合适的方法。
因此,统计学对结果的判断标准是“好坏”,从这个意义上说,统计学不仅是一门科学,也是一门艺术” 。因此,教学中教师应把握这个判断原则,防止简单地给出“对错”判断。下面举一个值得商榷的案例。
教师在课上要求学生根据两个同学的平时练习的数据,选择一位学生作为代表参加比赛。这两个同学,甲同学成绩不稳定,但有一个最好的成绩;而乙同学,虽然最好成绩不如甲,但成绩比较稳定,并且平均成绩高。
经过引导,教师要求学生应该选择乙同学作为选手。
这个案例反应出教师希望给出一个明确的“对错”判断。实际上,选择甲、乙都有道理。如果是射击比赛,需要计算每一轮射击成绩的总和,可能选择乙作为选手;如果是跳远比赛,需要选择成绩最好的一次作为最终成绩,那么就可能选择甲作为选手。那么,什么样的问题是适当的呢?下面也给出一例。
课标解读转播1(717045573) 20:56:24 北京—张丹(331867541) 20:56:02 11名男同学100米跑的成绩如下:
13秒2 17秒 13秒5 15秒8 12秒 17秒1 16秒7 15秒6 17秒 16秒6 16秒7。
学生能计算出这组数据的平均数是:15秒6;这组数据的中位数是:16秒6。在此基础上让学生利用数据分析如下问题:
(1)如果选择参加一项比赛,希望有一半的男同学可以参加,选择哪个成绩作为标准? (2)如果希望确定一个较高的标准,选择哪个成绩作为标准? (3)如果需要确定一个标准,你如何确定?为什么?
分析第一个问题,希望有一半男同学能够参加比赛,选择中位数作为标准;第二个问题可以用平均数作为标准;第三个问题学生首先自己确定标准,根据标准进行合理的选择。
其实,我认为《标准》和《实验稿》的精神是一致的,在关注变化的同时,我们要关注什么是没有变化的,实际上就是对于数学教育价值的深刻认识和对于学生发展的真正关怀。
总之,我们需要培养一个真正健康的任,真正有自己想法的人。要培养人的创新能力,必须注重过程,启发思考,总结经验,学会反思。要鼓励学生不断思考:为什么要思考它,思考的东西是什么,思考的核心是什么,思考的主线是什么,能启发哪些新的问题。
当然,课程改革任重道远,需要我们共同努力,共同面对可能遇到的艰苦。其实,当我们认认真真走过十年、甚至更多年后,当面对曾经的努力和困惑,会有一种坦然和幸福。心向往之!
第二篇:《义务教育数学课程标准》(2011年版)解读
《义务教育数学课程标准》(2011年版)解读
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。 数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、(1).理念中新增加了一些提法 要处理好四个关系 数学课程基本理念(两句话) 数学教学活动的本质要求 培养良好的数学学习习惯 注重启发式
正确看待教师的主导作用 处理好评价中的关系
注意信息技术与课程内容的整合 (2)关于数学观的修改: 原课标:
●数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
●数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
●数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
课标修改稿:
●数学是研究数量关系和空间形式的科学。
●数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具„„
●数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
●要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用
树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
(3)关于课程目标的修改: 在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。
课程目标提法上的一些变化:
——明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。
——提出了培养学生发现问题、提出问题、分析问题和解决问题能力。
——目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。
——学段目标的表述方式有所改变
五、“双基”变“四基”
2001年版:“双基”:基础知识、基本技能;
2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
并把“四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。 “双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。
常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。
六、(1)四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。 (2)关于设计思路的修改: ●学段划分保持不变;
●对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;
●对四个学习领域的名称作适当调整; ●对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。
(3)主要的关键词的变化:
●原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力
●修改后:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念
最近一次修改又加上了:应用意识、创新意识。 符号感为何改为符号意识? ●符号感(SymbolSense)
●原课标:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”
●修改稿:“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。” ●符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
结构上的变化:
数与代数的变化:(在内容结构上没有变化。) 第一学段:
①增加“能进行简单的整数四则混合运算(两步)”
②使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。 第二学段: ①增加的内容:
●增加“经历与他人交流各自算法的过程,并能表达自己的想法”。
●增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。 ●增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。
●增加“结合简单的实际情境,了解等量关系,并能用字母表示”。 ②调整的内容:
●将“理解等式的性质”,改为“了解等式的性质”
●将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。
③使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。
图形与几何的变化: 第一学段 ①删除的内容
●删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。
●删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。
●删除“会看简单的路线图”,相关要求放入第二学段。 ●删除“体会并认识千米、公顷”,相关要求放入第二学段。 ②降低要求
对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。
③使一些目标的表述更加准确和完整。例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。
第二学段:
①删掉“了解两点确定一条直线和两条相交直线确定一个点”。 ②增加“知道扇形”。 ③使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。
统计内容主要变化如下:
●第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。
●第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。
●加强体会数据的随机性。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准(修改稿)》希望通过数据分析使学生体会随机思想。
概率内容主要变化如下:
●第一学段、第二学段的要求降低。在第一学段,去掉了《标准》对此内容的要求。第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。
●明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。 第一学段:
①鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,删除“象形统计图、一格代表一个单位的条形统计图”、“平均数”的内容,相关要求放在了第二学段。
②删除“知道可以从报刊、杂志、电视等媒体中获取数据信息”。 ③删除“不确定现象”部分,相关要求放在了第二学段。 第二学段:
①删除“中位数”、“众数”的内容,相关要求放在了第三学段。 ②删除“体会数据可能产生的误导”。
③降低了“可能性”部分的要求,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述,定量描述放入第三学段。
加强体会数据的随机性
●这是修改后的一个重要变化。原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。
●这种变化从“数据分析观念”核心词的表述也可以看出。 综合与实践的变化: ●统一了三个学段的名称,进一步明确了其目地和内涵。 ●“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。
第三篇:《义务教育数学课程标准》(2011年版)解读
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:
数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”
2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、.理念中新增加了一些提法
要处理好四个关系
数学课程基本理念(两句话)
数学教学活动的本质要求
培养良好的数学学习习惯
注重启发式
正确看待教师的主导作用
处理好评价中的关系
注意信息技术与课程内容的整合
五、“双基”变“四基”
2001年版:“双基”:基础知识、基本技能;
2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
并把“四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
第四篇:《义务教育数学课程标准》(2011年版)解读——初中数学
浙江省教育厅教研室
许芬英
一、“课程基本理念”的修改
1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”
二、“设计思路”的修改
1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。
2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。
三、“课程目标”的修改
1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。
2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。
3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。
4.规范了课程目标的若干术语。并在学段目标中使用这些术语。
四、“课程内容”(原“内容标准”)的修改
1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。
2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。
3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。 (1)删除的内容
▲在“数与代数”领域,删除了一些内容,例如:
①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31) ②对有效数字的要求——“了解有效数字的概念”(实验稿P32) ③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33) ▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有: ①关于等腰梯形的相关要求(实验稿P
39、P43) ②探索并了解圆与圆的位置关系(实验稿P39)
③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)
④关于镜面对称的要求(实验稿P41) ▲“统计与概率”部分删除的内容 极差、频数折线图等内容 (2)新增加的内容
▲“数与代数”中既有必学的内容,也有选学的内容 ①知道|a|的含义(这里a表示有理数) ②最简二次根式和最简分式的概念
③能进行简单的整式乘法运算中增加了一次式与二次式相乘
④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等 ⑤会利用待定系数法确定一次函数的解析表达式
以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:
*⑥解简单的三元一次方程组
*⑦了解一元二次方程的根与系数的关系
*⑧知道给定不共线三点的坐标可以确定一个二次函数
▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。 ①会比较线段的大小,理解线段的和、差,以及线段中点的意义 ②了解平行于同一条直线的两条直线平行
③会按照边长的关系和角的大小对三角形进行分类 ④了解并证明圆内接四边形的对角互补
⑤了解正多边形的概念及正多边形与圆的关系
⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形 下面的要求是选学内容:
*⑦了解平行线性质定理的证明
*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧 *⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等 *⑩了解相似三角形判定定理的证明 (3)在要求上有变化的内容(略)
4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。
五、“实施建议”的修改
“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。
六、“实例”的修改
增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。
七、增加附录
将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。
第五篇:郑毓信:《义务教育数学课程标准(2011年版)》另类解读
作者: 来源: 时间:2013-4-17 8:29:00 阅读次 【大 中 小】
自从《义务教育数学课程标准(2011年版)颁布以来,众多专家都从各方面进行了解读 ,但再多的解读都围绕一个字:赞。《数学教育学报》2013年第1期发表了郑毓信教授的解读,让我们听听他老人家是如何解读课标的,让我们看看他眼中的“四基”和“核心概念”。郑教授提出对课标要“理论的实践性解读”与“教学实践的理论性反思”让我们听听他怎么说的。 友情提醒:
郑教授的文章有四部分:
一、研究的基本立场
二、聚焦“数学(基本)思想”
三、“数学基本活动经验”——困惑与思考
四、关于“核心概念”的若干思考
友情提醒:这篇文章信息量大,知识范围广,只有定下心来,慢慢看,一次一次看,一部分一部分反复看才能有收获,这样的收获足以让你对课标和数学教学的认识上升几个层次。
《义务教育数学课程标准(2011年版)》(以下简称“新课标”) [1]的颁布引发了广泛的“解读热”,这里强调“另类解读”主要反映了这样一种认识:不同声音的存在有利于人们的独立思考,从而就可切实避免各种片面性的理解或认识上的误区.文章集中于“四基”与“核心概念”等宏观方面,主要目标则是希望能给读者,特别是一线教师一定启示,从而促进中国数学教育事业的健康发展.
一、研究的基本立场
这是众多关于“新课标”的解读文章或专门报告的一个共同特点,即是对于一些新的理论思想的突出强调,特别是由“双基”到“四基”、由“双能”到“四能”的发展,以及10个“核心概念”.大家还可听到很多肯定性的评价.“无疑,‘四基’是对‘双基’与时俱进的发展,是在数学教育目标认识上的一个进步.”[2]“《标准》中将基本思想、基本活动经验与基础知识、基本技能并列为‘四基’,可以说是对课程目标全面认识的重大进展.”[3] 这些论述也许有一定道理;但这又是过去十多年课改实践的一个重要教训,即是应当防止盲目的乐观情绪,特别是各种简单化的理解,乃至不自觉地形成了一个新的时髦潮流.恰恰相反,教育工作者应当不断增强自身在这一方面的自觉性.
就当前而言,首先就应思考:什么应是解读“新课标”的主要背景?一个现成的回答显然在于:新旧课标的对照.但是,究竟又应如何去从事新旧课标的对照比较? 以下是一些不应被忽视的方面:
第一,在突出强调新旧课标不同之处的同时,也应高度重视两者的共同点.例如,以下的论述就可被看成从一个特定角度表明了后一方面工作的重要性:“课程标准从《实验稿》到((2011版》,我们当然应该关注修订了什么,但更要关注课程标准坚持了什么„„因为十年间对于数学课程标准的批评有很多是带有方向性、整体性的,在这种情况下关注课程标准中哪些没有变就显然更有意义”[4] 更为一般地说,这并直接关系到了教育工作的连续性,特别是,如何才能彻底纠正以下的长期弊病:“中国数学教育积累得太少,否定得太多.一谈改革,就否定以前的一切,老是否定自己,没有积累.”[5] 也正是从同一角度去分析,教育工作者更应高度重视深圳市南山区的以下经验:“只要对学生和教师有益处的改革,就一定要坚持做,做就一定做细做实做到底.”这也就是指,“对细部的关注„„用细节来表达价值观.这或许也是中国课改的一个新的起点吧.”[6]
第二,正因为“十年间对于数学课程标准的批评有很多是带有方向性、整体性的”,因此,也应十分关注这些批评意见究竟有多少得到了采纳?或者说,“新课标’’在这些方面究竟有了怎样的变化或发展? 由以下一些论述即可获得这方面的直接启示:
“认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方法.”“学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式.” 又,“课程内容的组织要重视过程,处理好过程与结果的关系„„要重视直接经验,处理好直接经验与间接经验的关系”.
“教师要发挥主导作用,处理好讲授与学生自主学习的关系„„”[1]
上面的分析也为以下问题提供了直接的解答:何者应当被看成课程改革深入发展、包括“课程标准”修订工作的主要依据?是过去十多年课改实践的总结与反思,更应切实抓好以下两个关键: (1)发现问题,正视问题,解决问题,不断前进; (2)发扬成绩,真正“做细做实做深”. 就一线教师而言,以下建议,同样可被看成过去十多年的课改实践给予人们的重要启示: 第一,“立足专业成长,关注基本问题”;
1 第二,与唯一强调理论的指导性作用相对照,更应提倡关于教学工作的这样一个新的定位:“反思性实践”,也即应当更加重视积极的教学实践与认真的总结与反思
最后,就“新课标”的学习与贯彻而言,教育工作者又应特别重视“理论的实践性解读”和“教学实践的理论性反思”,它们并可被看成理论与教学实践之间辩证关系的具体体现.以下就围绕“数学基本思想”、“基本活动经验”以及若干“核心概念”对此作出具体论述.
二、聚焦“数学(基本)思想”
“新课标”在这方面的一些明显问题:
第一,由于“《课标》没有展开阐述‘数学的基本思想’有哪些内涵和外延,这就给研究者留下了讨论的空间,而且由于它过去并没有被充分讨论过,所以可能仁者见仁,知者见智,不同的学者可能会有不完全一样的说法”.[9]
第二,除去“数学思想“以外,“新课标”中还多次提到了“数学思考”和“数学思维”,从而进一步增加了理解的困难.当然,在此还有这样一个密切相关的概念:“数学思想方法”.
第三,由于对“数学(基本)思想”的强调与先前关于“三维目标“的提倡有很大的一致性,因此,就应更为深入地去思考:究竟什么是提倡“数学基本思想“的真正新意? 显然,对于后一问题可以立即作出如下解答:这主要在于对“数学抽象的思想”、“数学推理的思想”、“数学模型的思想”,这样3个基本思想的突出强调,以及关于“数学基本思想”、“(一般)数学思想”与“数学思想方法”的层次区分.
例如,由“数学抽象的思想”派生出来的有:分类的思想,集合的思想,“变中有不变’’的思想,符号表示的思想,对应的思想,有限与无限的思想,等等. “由‘数学推理的思想’派生出来的有:归纳的思想,演绎的思想,公理化思想,数形结合的思想,转换化归的思想,联想类比的思想,普遍联系的思想,逐步逼近的思想,代换的思想,特殊与一般的思想,等等.”
另外,“在用数学思想解决具体问题时,对某一类问题反复推敲,会逐渐形成某一类程序化的操作,就构成了‘数
学方法,数学方法也是具有层次的.”[9] 面对这样的论述,一线教师应当如何去做? 容易想到,这正是这方面的传统立场:认真学习,深刻领会,全面贯彻„„但是,这种立场是否也有一定的局限性?为了促进读者的深入思考,可以首先提及这样两个事实: 第一,作为“数学思想”的具体分析,应当说存在多种不同的观点. 例如,以下就是这方面较有影响的一些著作:
L.克莱因的《古今数学思想》(上海科学技术出版社,1978);
张奠宙、朱成杰的《现代数学思想讲话》(江苏教育出版社,1991); 袁小明的《数学思想史概论》(广西教育出版社,1992). 由大致的浏览和比较又可发现:尽管它们都集中于所谓的”重大数学思想”,但相关论述与上述关于“基本思想”的分析则有很大不同;而且,尽管这3者的具体观点并不完全一致,它们又都突出地强调了数学思想的历史性、发展性和变化性.
在此还可特别提及日本著名数学家、数学教育家米山国藏的著作《数学的精神、思想和方法》(四川教育出版社,1986),因为,后者似乎也突出地强调了数学思想的层次区分:他称为数学的“精神”、“思想”与“方法”.但由简单的比较可以看出,后者的具体内容也与上面所提到的观点有很大不同. 如米山国藏所提到的“数学精神”就有7种: (1)应用化的精神;
(2)扩张化、一般化的精神; (3)绸织化、系统化的精神; (4)致力于发明发现的精神; (5)统一建设的精神; (6)严密化的精神;
(7)“思维的经济化”的精神.
他提到的“重要的数学思想”则包括: (1)数学的本质在于思考的充分自由; (2)传统思想与数学进步的关系; (3)极限思想;
(4)“不定义的术语组“和”不证明的命题组“的思想; (5)集合及群的思想;
2 (6)其它新思想; (7)高维空间的思想; (8)超穷数的思想:
(9)数学家头脑中的空间;
(10)数学的神秘性和数学的美.
综上可见,面对多种不同的理论主张,研究者的确应认真地去思考究竟应当如何去做? 第二,这也是过去十多年课改实践给予人们的又一重要教训,即是应当清楚地认识“理念先行,专家引领”这样一种“由上至下”的运作模式的局限性.因为,如果缺乏足够自觉性的话,就很可能造成严重 的消极后果,对此例如由课改初期在教学方法改革上所出现的形式主义倾向就可清楚地看出.
以下则是国际上的相关发展:“就研究工作而言,仅仅在一些年前仍然充满着居高临下这样一种基调,但现在已经发生了根本性的变化,即已转变成了对于教师的平等性立场这样一种自觉的定位.当前研究者常常强调他们的研究是与教师一起做出的、而不是关于教师的研究,强调走进教室倾听教师并与教师一起思考、而不是告诉教师去做什么,强调支持教师与学习者发展自己的能力、而不是力图去改变他们.”[10]由此可见,研究者确实应当从根本上对理论与实践(专家与教师)之间的关系作出新的认识. 更为具体地说,在明确倡导“反思性实践”这样一种关于教学工作新定位的同时,又应清楚地看到,强调实践与反思并非是指教育工作者完全不用重视理论(包括“新课标”)的学习,而是应当积极提倡“理论的实践性解读”.
以下就是“理论的实践性解读”的一个基本意义:注意分析理论的现实意义,也即应当深入地去思考相关的理论主张对于改进教学究竟有什么新的启示? 就目前的论题而言,这也就是指,强调“数学基本思想”对于教师改进教学究竟有什么新的启示? 另外,作为“理论的实践性解读”,又应努力做到“学以致用”,也即始终集中于这样一个问题:教学中应当如何去做才能真正促进学生的相关发展? 以下就从这一角度对一线教师提出一些具体建议: (1)求全或求用? 这就是指,无论是数学思想的学习还是教学,其关键不在于无一遗漏地去列举出各个数学思想(包括基本思想、一般思想和思想方法),而是应当更加关注如何能够针对具体的知识内容“由隐及显”地去揭示出其中所蕴涵的数学思想,并以此来带动具体知识内容的教学.
应当强调的是,这可被看成教学工作创造性质的一个重要表现,也即是一种“再创造”的工作;另外,只有以思想方法的分析带动具体知识内容的教学,数学课才能“教活”、“教懂”、“教深”,也即不仅能让学生看到真正的数学活动,切实体现教学工作所应有的“鲜活性和质感性”,也能帮助学生很好地掌握相应的数学知识,包括深层次的数学思想与方法. (2)层次区分或辩证运动? 相对于严格的层次区分,应更加重视自己的独立思考,重视特殊与一般之间的辩证关系.这也就是指,教育工作者不仅应当十分重视数学思想的应用,而且也应通过具体与抽象、特殊与一般之间的辩证运动不断深化自己的认识.
例如,如果研究者所采用的是“化归的思想“这样一个词语,这主要就是指这样一个普遍性的思想:数学中往往可以通过将新的、较为复杂和困难的问题转化成已经得到解决的、较为简单和容易的问题来解决问题.与此相对照,如果所强调的是“化归的方法”,则就意味着研究者己将关注点转移到了如何能够实现所说的转化,例如,所谓的“分割法”、“映射法”、“求变法”等就都是这样的实例.再则,所谓“化归法的核心思想”则代表了相反方向上的运动,也即由具体方法重新上升到了一般性的思想,包括“联系的思想”、“变化的思想”等. (3)就当前而言,又应特别强调这样几点:
第一,清楚认识“广度”与“深度”之间的辩证关系.如果说“数学思想”主要反映认识的深度,那么,就只有从较为广泛的角度去进行分析,也即十分重视视角的广度,才能真正达到较大的深度,也即准确地揭示出相关知识内容中所蕴涵的数学思想.(这里所提到的“深度”与“广度”正是中国旅美学者马立平女士所提出的关于“数学知识的深刻理解”的两个主要内涵(另一相关的维度是“连通度”[11]).马立平提出,后者并可被看成中国(小学)数学教师与美国同行相比的主要优点.由此可见,对于数学思想的很好掌握也关系到了中国数学教育传统的继承与发展.) 例如,只有将自然数、小数与分数的运算联系起来加以考察,才能很好地理解到,这些内容集中地体现了以下一些数学思想: (1)逆运算的思想; (2)不断扩展的思想: (3)类比与化归的思想:
3 (4)算法化的思想;
(5)客体化与结构化的思想.
第二,高度关注教学活动的可接受性.相对于具体的数学知识和技能而言,数学思想特别是那些较为抽象的数学思想的学习显然需要更长的时间,且主要是一个潜移默化的过程.因此,教师应当充分尊重学生的认知发展水平,并能有针对性地采取较为恰当的方法,即如由“深藏不露”逐步过渡到“画龙点睛”,由“点到为止”逐步过渡到“清楚表述”,由“教师示范”逐步过渡到“主要促进学生的自我总结与自觉应用”,等等.
第三,这是教育工作者当前所面临的一项紧迫任务.即,如何能够通过积极的教学实践与认真的总结与反思,切实做好数学思想的清楚界定与合理定位.
事实上,这即可被看成上述关于数学思想的历史性、发展性和变化性的一个直接结论,又由于个体的发展往往重复种族发展的历史.因此,与笼统地去提倡所谓的“数学基本思想”相比较,就应更加重视数学思想的“清楚界定”与“合理定位”,也即应当依据学生的认知发展水平,对于基础教育各个阶段究竟应当帮助学生掌握哪些数学思想作出更为具体和深入的分析.
显然,也只有这样,“数学基本思想”才不会蜕变成为空洞的教条,这方面的教育目标也才能真正得到落实.
三、“数学基本活动经验”——困惑与思考 对于“基本活动经验”《小学数学教与学》编辑部曾有过这样一个评论:“相对于原来的‘双基’而言,基本活动经验显得更为‘虚幻’,无论是理论内涵还是实际的培养策略都不易把握.”
这一评论并无不当之处,因为,从理论的角度看,这一概念确有很多问题需要人们更为深入地去进行思考:
第一,这里所说的“活动”究竟是指具体的操作性活动、还是应当将思维活动也包括在内,乃至主要集中于思维活动? 在这方面并可看到一些不同的“解读”:“数学活动经验,专指对具体、形象的事物进行具体操作所获得的经验,以区别于广义的数学思维所获得的经验.”[12]又,“基本活动经验„„其核心是如何思考的经验,最终帮助学生建立自己的数学现实和数学学习的现实,学会运用数学的思维方式进行思考.”[3]
另外,按照后一解读,又可提出这样一个问题:数学教育是否真有必要专门引入“帮助学生获得基本活动经验”这样一个目标,还是可以将此直接归属于“帮助学生学会数学地思维”? 第二,对于数学教育中的所说的“活动”是否应与真正的数学(研究)活动加以明确区分? 以下论述可以被看成对此提供了具体的解答:“‘数学活动’„„是数学教学的有机组成部分.教师的课堂讲授、学生的课堂学习,是最主要的‘数学活动’.”[9]但是,按照这样的解读,所谓的“活动经验”与一般意义上的“学习经验”就不再有任何区别,那么,为什么要专门地引入“数学活动经验”这样一个教育目标呢? 更为一般地说,究竟什么是数学教育中所谓的“数学活动”的基本内涵与主要特征? 第三,是否应当特别强调对于活动的直接参与,还是应当将“间接参与”也包括在内?(如果突出“经验”这样一个字眼,这就是指,在此所指的究竟是“直接经验”、还是应当同时包括所谓的“间接经验”?) 显然,当前的主流观点认为应当将“间接参与”也包括在内;但是,按照这样的理解,“过程性目标”的实现无疑就将大打折扣,或者说,这将成为这方面教学工作所面临的一个重大挑战,即如何能够帮助学生通过“间接参与”获得以“感受”、“经历”和“体验”等为主要特征的“活动经验”? 第四,由于(感性)经验具有明显的局限性,因此,应认真地去思考:在强调帮助学生获得“基本活动经验”的同时,教学中是否也应清楚地指明经验的局限性,从而帮助学生很好地认识超越经验的必要性?当然,如果将思维活动也包括在内,就应进一步去思考数学思维活动经验是否也有其一定的局限性? 由于“经验的局限性”事实上已经成为一种“常识”:“我想,我们是否应更多地思考如何‘对经验的改造’,将经验改造为科学,而不是成为孩子们创新思维的绊脚石”,在当前就应注意防止这样一种倾向,即由于盲目追随时髦而造成“常识的迷失”.
第五,是否应特别强调关于“基本活动经验”与“一般活动经验”的区分,这究竟是一种绝对的区分,还是只具有相对的意义?什么是这两者的具体涵义? 由以下的“平民解读”或许就可获得这方面的直接启示:“简单地说,‘基本’是相对的,如我们上楼梯,当你上到第二层时,第一层是基本的;你上到第二层,想上第三层时,这第二层便变成基本的了.”[13] 进而,正如先前关于“数学思想”的分析,研究者在此显然也面临着“清楚界定”与“合理定位”这样一个任务.
4 第六,更为重要的是,数学教育为什么应当特别重视“帮助学生获得基本活动经验”,乃至将此列为数学教育的基本目标之一? 作为上述问题的具体解答,显然应当提到以下的观点:“教学不仅要教给学生知识,更要帮助学生形成智慧.知识的主要载体是书本,智慧则形成于经验的过程中,形成于经历的活动中”;从而,为了帮助学生形成智慧,就应更加重视过程,更加重视学生对于活动的直接参与[12].
但是,这里应更为深入地思考:数学教学中希望学生形成的究竟是一种什么样的智慧,是简单的经验积累,还是别的什么智慧? 在此还可通过“数学思想”与“数学活动经验”的简单比较来进行分析,这就是指,数学的“活动经验”是否与“数学思想”一样具有超出数学本身的普遍意义,从而即使对于大多数将来未必会从事任何与数学直接相关工作的学生仍可起到积极的作用?容易想到,这事实上也正是任一诸如“学数学、做数学”这样的主张所应认真思考的问题.
当然,与纯粹的理论分析相比较,研究者在此也应更加重视“理论的实践性解读”,包括通过积极的教学实践与认真的总结与反思对相关理论作出必要的检验与改进.
另外,就认识的不断深入而言,又应特别强调“教学实践的理论性反思”,这也就是指,研究者应当努力超越各个具体的教学活动,并从更为一般的角度去进行总结与反思.即如揭示出具有较大普遍性的问题,引出具有较大普遍意义的结论,等等.
以下就是这方面的一个实例,即是“关于获得数学活动经验的3点认识“: (1)经验在经历中获得. (2)经历了≠获得了.
(3)经验,并非总是亲历所得[14].
从“教学实践的理论性反思”这一角度去分析,应特别强调这样两点:
(1)教学不仅应当让学生有所收获,更应注意分析学生所获得的究竟是什么.
因为,这正是这方面不应被忽视的一个事实:人们经由(数学)活动所获得的未必是数学的活动经验,也可能与数学完全无关.
以下就是国际上相关研究的一个直接结论:儿童完全可能“通过操作对概念进行运算,但却不知道自己在做什么”;这也就是指,尽管“旁观者确实可以将它解释为数学,因为他熟悉数学,也了解实验过程中儿童的活动是什么意思,可是儿童并不知道.”[15]
由此可见,不应唯一地强调学生对于活动的参与,而应更加重视对这些活动教学涵义的分析.也即应当从数学和数学学习的角度深入分析这些活动的教学意义,并通过自己的教学使学生也能十分清楚和明白.
(2)如何促进学生由“经历”向“获得”的重要转化.
更为一般地说,这显然也关系到这样一个问题,即是数学学习中不应“为动手而动手”,而应更加重视对于操作层面的必要超越,努力实现“活动的内化”.
但是,究竟什么是这里所说的“活动的内化”的具体涵义呢? 对于自己所提出的这一概念,瑞士著名心理学家、哲学家皮亚杰曾作过这样的解释:这主要是指这样一种思维活动,即是辨识出“动作的可以予以一般化的特征”.由此可见,“活动的内化”事实上就是一种建构的活动,也即如何能由具体的活动抽象出相应的模式(图式化). 从而,数学教学所应主要关注的就并非活动经验的简单积累,而应更加重视如何能够帮助学生实现相应的思维发展,后者又不可能通过反复的实践简单地得以实现(“熟能生巧”),而主要是一种反思性的活动,也即是以已有的东西(活动或运演)作为直接的对象,并就主要表现为由较低层次向更高层次的发展.(也正是在这样的意义上,才可谈及数学抽象与一般自然科学中的抽象活动的重要区别,并称之为“自反抽象”.) 依据上面的分析,可以很好地理解以下一些论述:“只要儿童没能对自己的活动进行反思,他就达不到高一级的层次.”[15]又,“数学化一个重要的方面就是反思自己的活动.从而促使改变看问题的角度.”“数学化和反思是互相紧密联系的.事实上我认为反思存在于数学化的各个方面.”[16] 综上可见,从数学教育的角度看,“智慧的教育”决不应被理解成经验的简单积累,而应更加强调数学思维由较低层次向更高层次的发展,也即应当明确肯定“数学智慧”的反思性质.
四、关于“核心概念”的若干思考
就“新课标”中所提到的10个“核心概念”(数感;符号意识;空间观念;几何直观;数据分析观念;运算能力;推理能力;模型思想;应用意识;创新意识)而言,应当说也存在一些明显的问题:
第一,这些概念明显地不属于同一层次.“的确,这些核心概念的分类,还没有非常严格的严谨性在里面„„也许我们数学教育的研究基础还不足以作一个很好的分类.”
5 第二,词语的意义有待于说明或澄清,特别是,究竟应当如何去理解“感(悟)”、“意识”、“观念”、“直观”、“能力”、“思想”等词语的意义与区别? 例如,为了表述上的一致性,能否将“模型思想”改为“建模能力”,或是将“推理能力”改为“推理思想”? 第三,这10个概念不能被看成已经很好地覆盖了基础教育各个阶段数学教学的主要内容.
例如,与所谓的“数学基本思想”相对应,除去“推理能力”和“模型思想”以外,是否还应增加“抽象能力”这样一个“核心概念”?另外,由于“策略思想“对于数学显然也具有特别的重要性,是否又应增加“策略思想”这样一个核心概念? 第四,更为重要的是,又应如何去把握基础教育各个阶段数学学习的主要内容? 作为上述问题的具体分析,在此特别提及国际上的一项研究成果[17]:这正是世界范围内以“课程标准”为主要特征的新一轮数学课程改革的一个共同特征,即是普遍地采用了平行地列举出数学课程应当努力实现的各项“标准”这样一种表述方式(可称为“条目并列式”),从而也就与传统的“学科核心式”构成了鲜明对照:然而,这又正是“条目并列式”的一个主要不足,即是不利于人们较好地掌握各个学段的主要教学内容.
另外,美国“数学课程标准”历史演变过程的具体考察表明:“不稳定、不连贯、不统一正是‘条目并列式’最为明显的特征”,从而也就无可避免地对实际教学产生了严重的消极影响.显然,这也为教育工作者在这方面的具体工作敲响了警钟,即是应当切实防止工作中的随意性.
那么,“数学课程标准”中究竟为什么要引入所谓的“核心概念”呢?以下就是一些相关的论述: “核心概念的设计与课程目标的实现、课程内容实质的理解以及教学的重点难点的把握有密切关系.”又,“核心概念提出的目标之一,就是在具体的课程内容与课程的总体目标之间建立起联系.通过把握这些核心概念,实现数学课程目标.”“数学内容的4个方面都以10个核心概念中的一个或几个为统领,学生对这些核心概念的体验与把握,是对这些内容的真正理解和掌握的标志.”[18]
但是,在此仍然存在这样一个问题,即,究竟应当如何去把握基础教育各个学段数学学习的核心内容? 另外,就如以上关于“数学基本思想”和“数学基本活动经验“的分析,就“核心概念”的学习与贯彻而言,也应特别重视“理论的实践性解读”与“实践的理论性反思”.以下就围绕“数感”与“符号意识”、并主要针对小学数学教学作出具体分析. (1)“数感”与学生“数感”的发展.
“新课标”中关于‘‘数感”的论述是:“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟.建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系.” 在此特别强调这样两点:
①数感有一个后天的发展过程.
具体地说,尽管人们在这方面有一定的先天能力,但后者又有明显的局限性,其发展则主要依靠后天的学习,并可依据.“从无到有、从粗糙到精确”、“由简单到复杂、由单一到多元”这样的认识去把握这一过程.
例如,就“数与数量”而言,首先就涉及到了数的概念的不断扩展,特别是小数和分数的引入.另外,就每种数的认识而言,又都涉及到了适当的心理表征的建构,即,不仅应当让学生通过数数去认识各个具体的自然数,也应通过记数法的学习使学生有可能“接触”到现实生活中很难直接遇及的各种“大数”,直至初步认识数的无限性,还应通过引入直观表示帮助学生建立概念的视觉形象,从而发展起更为丰富的心理表征. 再例如,“数量关系”显然也具有多样性的特征,包括运算的多样性以及相等与不相等的关系等;另外,就各种运算的具体实施而言,显然又都有一个不断优化的过程.例如对于“单位数的加法”就可区分出3种不同的水平,反映了主体对于数量关系认识的不断扩展与深化.
②在教学中并应十分重视与“数感“直接相关的“情感、态度与价值观”的培养.
例如,这显然就可被看成后者的一个基本涵义,即是对于事物数量方面的敏感性,特别是,乐于计算,乐于从事数
量分析,而不是对此感到恐惧,甚至更以“数盲”感到自豪. 进而,作为“理论性反思”,又应特别强调由素朴的情感(感悟)向更为自觉的认识的过渡,后者即是指,人们应当超出单纯的工具观念、并从整体性文化的视角更为深入地认识数量分析的意义. 事实上,这正是中西方文化的一个重要差异.西方文化在很大程度上可以被看成一种“数学文化”,对此例如由所谓的“毕达哥拉斯一柏拉图传统”就可清楚地看出.即是认为数量关系构成了一切事物和现象的本质,西方并因此形成了“由定量到定性”的研究传统,后者又正是导致现代意义上的自然科学在西方形成的一个重要原因.与此相对照,由于“儒家文化”的主导地位,中国的文化传统却始终未能清楚地认识并充分发挥数学的文化价值.
6 由此可见,充分发挥数学的文化价值应当成为中国数学教师自觉承担的一项重要社会责任. (2)“符号意识”与代数思想.
就“符号意识”而言,特别强调这样几点:
①与“数感”一样,“符号意识”也有一个后天的发展过程;又由于符号的认识和应用显然已经超出了单纯感悟的范围,也即主要表现为自觉的认识,因此,“新课标”中将原来的“符号感”改成“符号意识”就是较为合理的.(也应从同一角度去理解“代数思想”这一术语的使用,即是表明主体的自觉程度有了更大的提高.) ②尽管小学数学已经包含有多种不同的符号,如数字符号、运算符号、关系符号等,但又只有联系“代数思想”去进行分析思考,才能更好地理解与把握“符号意识”的内涵与作用,包括如何能在小学数学的教学中很好地渗透相关的数学思想,不仅真正做到居高临下,也能很好体现教学的整体性. 具体地说,文字符号的引入显然是区分小学与中学数学学习的一个重要标志,而其主要功能之一就在于为数学抽象提供了必要的工具.后者事实上也正是代数思想的一个基本内涵一一“代数即概括”[20] 当然,由小学数学向中学数学的过渡还表现于方程方法的学习.但是,究竟什么是方程方法与算术方法的主要区别,特别是,这是否就是指用字母表示(未知)数? 尽管用字母表示(未知)数,的确可被看成利用方程解决问题的必要前提,但着眼点的变化又应被看成由算术方法向方程方法过渡的真正要点.也即,将着眼点由唯一集中于如何求取未知数和具体的运算过程转移到等量关系的分析.进而,由于在代数中已将方程的求解归结到相应算法的直接应用,从而就不再需要任何特殊的技巧或方法,这样,解题的过程也就被极大地简化了.因此可以断言:“等价是代数中的一个核心观念.”
另外,还应指出的是,算法的应用十分清楚地表明了数学符号的本质:与“缩写意义上的符号”不同,这主要应被看成“操作意义上的符号”.
例如,基于这样的思考,韦达常常被说成代数学的创造者.因为,尽管早在古希腊时代人们就己开始用字母代表数量,但韦达在历史上首先提出了这样一个思想(他称为“逼真算法”);可以用字母表示已知量和未知量,并对此进行纯形式的操作.
容易想到,符号性质的上述变化事实上也可被看成一个“客体化”的过程,这也就是指,在此己不再唯一地关注符号的指称意义,而是将此看成直接的对象.当然,从发展的角度看,又应当提及“符号意识”的进一步变化,即是将字母看成变量.这样,“代数不仅仅成为关于方程和解方程的研究,也逐步发展成涵盖函数(及其表征形式)和变换的研究”..
综上可见,只有联系代数思想(概括的思想,等价的思想与算法的思想)进行分析,才能更好地理解“符号意识”
的具体内涵.当然,这正是教学工作创造性质的一个重要表现,即,如何能够很好地把握适当的“度”,既能做到“居高临下”,也即很好地渗透更高层次的数学思想,同时也能符合学生的认知发展水平. ③对于“符号意识”,也应联系“三维目标”进行分析理解.
具体地说,由于“符号意识”的形成主要是一个后天的发展过程,因此,从“情感、态度与价值观”的角度看,在教学中就应积极促成这样一种变化,即,帮助学生由对于符号的陌生感、排斥感逐步转变成为认同感、亲切感,并乐于加以应用.
进而,这又是一般的语言学习、特别是外语学习给予教育工作者的一个重要启示:学习一种语言就是进入了一种新的文化.显然,符号语言在这方面也有其一定的特殊性,从而就为进一步改进教学指明了新的努力方向,即,通过数学学习帮助学生清楚地认识超越直接经验的重要性,乐于与抽象事物打交道,并能不断提高思维的精确性与简单性„„
综上可见,就“课程标准”的学习和贯彻而言,应当大力提倡“理论的实践性解读”与“教学实践的理论性反思”,从而不仅能进一步改进教学,也能切实提高自己的专业水准,包括促进“课程标准”的进一步修改与完善.
[参考文献] 【1】中华人民共和国教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2011.
【2】唐彩斌.“四基”“四能”给课程建设带来的影响一一宋乃庆教授访谈录[J].小学教学,2012,(7-8):11-13. 【3】张丹,白永潇.新课标的课程目标及其变化[J].小学教学,2012,(5):4-7. 【4】唐彩斌.数学课程改革这十年一一教育部基础教育课程教材发展中心刘坚教授访谈录fJl.小学教学,2012,(7-8):4一10.
【5】赵雄辉.中国数学教育:扬弃与借鉴[J[.湖南教育,2010,(5,6):25-27,25—28. 【6】余慧娟,施久铬.课改改到深处是“细节”[J].人民教育,2012,(9):40—45. 【7】郑毓信.数学教师的专业成长[J[.人民教育,2010,(8):37-9.
【8】郑毓信.教师“实践性智慧”的内涵与发展途径【J1.中学数学月刊,2011,(12):1-4.
【9】顾沛.数学基础教育中的“双基”如何发展为“四基”[J].数学教育学报,2012,2l(1):14-16.
7 【10】Sfard A.What Can Be More Practical Than Good Research?——On the Relations between Research and Practice of Mathematics Education[J].Educational Studies in Mathematics,2005,(3):393-413.【11】马立平.小学数学的掌握和教学[M].上海:华东师范大学出版社,2011.
【12】史宁中,马云鹏.基础教育数学课程改革的设计、实施与展望【M].南宁:广西教育出版社,2009. 【13】任景业.研究课标的建议一一换个角度看课标[J].小学教学,2012,(7—8):36—39. 【14】贲友林.关于获得数学活动经验的三点认识[J].江苏教育,2012,(Z1):111-112. 【15】弗赖登塔尔.作为教育任务的数学[M].上海:上海教育出版社,1995.
【16】弗赖登塔尔.数学教育再探一一在中国的讲学[M].上海:上海教育出版社,1999. 【17】马立平.美国小学数学内容结构之批评【n数学教育学报,2012,21(4):卜15.
【18】马云鹏.数学:“四基”明确数学素养一一《义务教育数学课程标准(2011年版)》热点问题访谈[J]_人民教育,2012,(6):40-44.
【19】郑毓信.多元表征理论与概念教学[J1.小学数学教育,20tl,(10):3-7.
【20】基兰.关于代数的教和学研究[A].古铁雷斯,伯拉.数学教育心理学研究手册:过去、现在与未来[c].桂林:广西师范大学出版社,2009.