范文网 论文资料 光子晶体形变传感器原理论文(通用)

光子晶体形变传感器原理论文(通用)

光子晶体形变传感器原理论文20世纪80年代, John和Yablonovitch提出了光子晶体新材料, 它是一种具有周期结构的人造材料, 对于三维光子晶体, 在一定的频率范围内, 不管传播方向如何, 这种材料都禁止在该频率范围内电磁波的传播。

光子晶体形变传感器原理论文

20世纪80年代, John和Yablonovitch提出了光子晶体新材料, 它是一种具有周期结构的人造材料, 对于三维光子晶体, 在一定的频率范围内, 不管传播方向如何, 这种材料都禁止在该频率范围内电磁波的传播, 这个频带范围称为光子晶体的光带隙, 人们预测, 由于具有独特的光带隙性能, 光子晶体将在不久的将来为光通信以及其他相关领域带来根本性的变化光子晶体是介电常数具有周期特性的人造结构材料, 正是这样的结构使其具有了调制材料中光子传播状态的能力。

1 一维光子晶体PBG的性能

利用传输矩阵法, 预测多层介质的光带隙性能, 将一层介质等效成一个界面, 应用电场强度E和磁场强度H的切向分量在界面两侧连续的边界条件, 得到入射介质中的光场E0, H0与出射介质中的光场E2, H2之间的关系为:

矩阵M1称为介质层的特征矩阵, 它包含了介质层的全部有用参量, 并且为单位模矩阵;δ1= (2πλ) N1d1cosθ1为相位厚度, N1, d1为介质层的折射率和几何厚度, 两者的乘积为光学厚度, 1θ为光线在介质层中与法线方向的夹角, 1η为有效导纳, 对于p偏振, η1=N1/cosθ1, 表1 MgF2和ZnSe的弹性性能和折射率对于s偏振, η1=N1cosθ1。设光子晶体由k层介质组成, 则整体特征矩阵为:

则反射系数r和透射系数t为:

而反射率为:

由此可以得到光线在光子晶体中的传播特性, 我们用常规的高低折射率相间的λ/4膜系模拟可见光长波区的一维光子晶体结构, λ为中心波长, 每个周期包含一层高折射率材料以及一层低折射率材料, 每层的光学厚度相等, 均为λ/4。随周期数的增加, 光子晶体的带隙结构趋于稳定。图1所示出具有6个周期 (共12层) 的某光子晶体的反射光谱, 禁带起始波长1λ和禁带截止波长1λ之间的光波被全部反射, 禁带宽为λ2-λ1。

2 光子晶体的受力与PBG性能的关系

假设光子晶体中各材料是各向同性的弹性材料, 并且受力后其介电性能不发生改变, 仍然用高低折射率相间λ4膜系模拟可见光长波区的一维光子晶体结构, 选取在该区透明的MgF和2ZnSe作为基本材料, 其弹性模量、泊松比和折射率如表1所示。选择中心波长为650nm, 则Mg F2层的厚度为119nm, ZnSe层的厚度为65nm共有6个周期, 而且光正入射到光子晶体上, 可以通过数值法计算得到, 将各层介质受压力后的厚度代入 (1) ~ (4) 式, 就可以得到一维光子晶体受压力后的反射光谱, 图2示出压力对带隙结构的影响, 可以看到施加压力后, 禁带的位置向短波方向移动, 同时禁带宽变小图3和图4示出压力与起始波长和截止波长之间的关系, 可以看出它们之间都呈简单的线性关系。这样, 根据起始波长和截止波长可以很容易地推断出压力的大小, 而精度只取决于对光波波长测量的精度。定义压光敏感系数为, 其中p为压力, 压光敏感系数的含义为压力引起的波长相对变化。根据图3和图4, 可得到起始波长的压光P敏感系数为, -8.8×10-6MPa-1, 截止波长的压光敏感系数为-9.0×10-6MPa-1为了提高压光敏感系数, 可以选择具有较小弹性模量的材料。

以上通过研究机械载荷对光子晶体的光带隙性能的影响, 发现两者之间存在简单的线性关系, 并因此提出了利用这种对应关系研制压光传感器的可能性。由于光子晶体的结构周期和光波波长为一个数量级, 也就有可能制造出一系列精巧的压光传感器或者其他精密仪器。这种传感器的一个优点是可以在不直接接触到受压区域的情况下测量压力的大小。那么温度载荷对光子晶体的形变影响是什么呢?我们来看一下光的相位特性, 许多光物理现象与相位特性有关。在光子晶体中, 几乎所有光物理现象都与相位特性相关联, 基于光子晶体相位特性的温度传感器, 它具有很高的灵敏度。

2.1 含耦合缺陷的不对称结构光子晶体的物理特性

光子晶体缺陷模的相位特性过去很少被应用, 其主要原因如下:在缺陷模光是高透射的, 离开缺陷模光是高反射的, 这种透射光或反射光的光强剧烈变化会使相位测量中光强无法恒定。另外相位还受衬底等影响。通过研究我们发现, 以上问题都能通过光子晶体不对称结构或异质结结构获得解决。我们计算和研究了含缺陷的一维光子晶体不对称结构的带隙和相位特性。不对称结构使缺陷模的高透射消失, 即整个带隙 (包括缺陷模频率) 的反射率接近于1, 但在缺陷模频率附近反射光的相移随频率迅速改变。对应耦合缺陷模的每一个子峰, 相移等于2π, 对含5个耦合缺陷层的缺陷模, 相移等于10π, 并且不对称结构使衬底的影响被克服。相位曲线中有近似线性一段, 这种近似线性关系在光子器件的应用中很有价值。下面我们基于光子晶体相位的上述特性, 以温度传感器为例讨论光子晶体相位特性在传感器中的应用。

2.2 高灵敏高分辨率光子晶体相位温度传感器

如果光子晶体缺陷层的介质是温度敏感材料, 温度变化时, 缺陷模的频率和相位都将随着温度而变化。根据热光效应, 温度直接导致的折射率变化可表示为。这里的为折射率随温度变化系数 (也称热光系数) , 越大, 说明温度引起的折射率变化就越明显。本文的计算中将选环氧树脂作为耦合缺陷层。环氧树脂的参数如下:折射率为1.5122。耦合缺陷模中含多个子峰, 两边沿的子峰频率处的相位随频率变化最剧烈。利用此最边沿的子峰获得较高的温度灵敏度, 且缺陷层越多, 则子峰越密, 即灵敏度越高。所以, 本文中用含10个耦合缺陷层结构, 并用频率最高的子峰的相位特性为例进行研究。具体的结构为 (LH) 3D- (HL) 3H (LH) 3D (HL) 3H (LH) 3D (HL) 3H (LH) 3D- (HL) 3H (LH) 3D (HL) 8, 其中nH=3.3, nL=1.45, nD=1.5 1 22 (环氧树脂的折射率) , nDdD=λ0/2, nHdH=nLdL=λ0/4。对这一结构计算得到的缺陷模中频率最高的子峰的相位特性能很好满足相位温度传感器的要求。如果在某项特殊应用中既要有很高的灵敏度又要有较宽的测量范围, 也可考虑用如下方法解决:可以设计一种特殊光子晶体, 其杂质层是热敏材料, 而周期层是电场诱变折射率材料, 这样就能用电场分档改变测量范围而实现宽范围测量。另外, 对高温的测量则要另选材料。利用光子晶体不对称结构解决了耦合缺陷模的不对称结构, 把光子晶体的相位特性原理制作出了高灵敏高分辨率温度传感器。

3 结语

本文具体分析了机械载荷与温度载荷光子晶体传感器原理可能制造出一系列精巧的压力、温度传感器或者其他精密仪器。这种传感器的一个优点是可以在不直接接触到受压区域的情况下测量压力的大小, 应当指出, 本文的工作还是探索性的。

摘要:当光子晶体材料承受外载荷时, 必然会引起形变, 并改变其组成材料的空间排列方式, 从而导致其光带隙性能的改变。而外载荷与光带隙性能之间的对应关系, 计算表明, 压力的大小与禁带起始波长、截止波长和禁带宽之间呈简单的线性对应关系, 通过测量光带隙性能而制造出感知外载荷的传感器。外载荷也可以是温度载荷, 对含耦合缺陷的不对称结构光子晶体的研究发现, 其缺陷模频率附近的反射率接近于1, 而缺陷模频率附近反射光的相移随频率迅速改变;当缺陷层为折射率的温度敏感材料时, 温度的极微小变化就能使处于缺陷模频率的反射光相移发生很显著变化。根据这一原理, 设计了高灵敏高分辨率的相位温度传感器。

关键词:光子晶体,压光,光的相移

参考文献

[1] John S 1984 Phys.Rev.Lett.53 2169.

[2] John S 1987Phys.Rev.Lett.58 2486.

[3] Yablonovitch E 1987 Phys.Rev.Lett.58 2059.

[4] Liu X Y2000Acta Phys Japan.J.Appl.Phys.38 L786.

[5] Noda S, Yokoyama M, Imada M, Chutinan A, Mochizuki M2001 Science 293 1123.

[6] Wang Z, Fan S H 2005 Opt.Lett.30 1989.

[7] He Y J, Su H M, Tang F Q, Dong P, Wang H Z 2001ActaPhys.Sin.50 892 (in Chinese) 何拥军, 苏慧敏, 唐芳琼, 等.物理学报, 2001, 50:892.

[8] Zhong Y C, Zhu S A, Wang H Z 2006 Acta Phys.Sin.55688 (in Chinese) 钟永春, 朱少安, 汪河洲.物理学报, 2006, 55:688.

[9] Wei Z C, Dai Q F, Wang H Z 2006 Acta Phys.Sin.55 733 (in Chinese) 韦中超, 戴峭峰, 汪河洲, 物理学报, 2006, 55:733.

[10] Li-Ping Xu, Ting-Dun Wen, Xiao-Feng Yang, and Wen-Dong Zhang.The resonant tunneling in Si1-xGex/Sisuperlattices.Solid State Phenomena Vols, 2007:121~123.

[11] Li-Ping Xu, Ting-Dun Wen, Xiao-Feng Yang.Mesopiezoresistive effects in double-barrier resonant tunnel-ing structures[J].Applied Physics Letters, 2008, 92:043508.

[12] 温廷敦, 张文栋.介观压阻效应[J].微纳电子技术, 2003.

上一篇
下一篇
返回顶部