范文网 论文资料 模式识别学习心得体会(全文)

模式识别学习心得体会(全文)

模式识别学习心得体会我们成长过程中,会面临着各种事情,在事情发生后,以心得体会的方式进行记录,可使我们改进不良思想,留下激励自己的正确思想。怎么写出有意义的心得体会呢?以下是小编整理的关于《模式识别学习心得体会》的相关内容,希望能给你带来帮。

模式识别学习心得体会

我们成长过程中,会面临着各种事情,在事情发生后,以心得体会的方式进行记录,可使我们改进不良思想,留下激励自己的正确思想。怎么写出有意义的心得体会呢?以下是小编整理的关于《模式识别学习心得体会》的相关内容,希望能给你带来帮助!

第一篇:模式识别学习心得体会

关于学习了解模式识别技术报告

关于了解学习模式识别技术报告

谈起模式识别,我们首先想到的是人工智能。模式识别是人工智能的一个分支,是计算机应用内容的一部分。要想了解学习模式识别,首先要懂得人工智能。

第一篇 人工智能

什么是人工智能呢?人工智能主要用人工的方法和技术,模仿,延伸和扩展人的智能,实现机器智能。人工智能的长期目标是实现达到人类智力水平的人工智能。(摘自《人工智能》史忠植编著,第一章 绪论)

简单来说就是使机器拥有类人行为方法,类人思维方法和理性行为方法。让机器像人一样拥有自主思维的能力,拥有人的生存技能,甚至在某方面超过人类,用所拥有的技能,更好的为人类服务,解放人类的双手。

简单了解了人工智能的概念,接下来将介绍人工智能的起源与发展历史。说到历史,很多人可能有点不大相信。人类对智能机器的梦想和追求可以追溯到三千多年前。也许你会有疑问,三千多年前,人类文明发展都不算成熟,怎么可能会有人对机器有概念。当然,那时候的机器并非现在的机器概念。在我国,早在西周时代(公元前1066~公元前771年),就流传有关巧匠偃师献给周穆王艺伎的故事。东汉(公元25~公元220年)张衡发明的指南车是世界上最早的机器人雏形。(摘自《人工智能》史忠植编著,第一章 绪论)现在你也许已经笑掉大牙了。那样一个简易工具竟然说是机器人雏形。但是事实就是这样,现在对机器人的概念依旧模糊,有些人觉得机器人必须先有像人一样的外形。其次是有人一样的思维。这个描述是没有错的,但是有点片面了,只顾及到字面意思了。机器人的概念是自动执行工作的机器装置。所以机器可以自动执行工作都叫机器人。在国外也有案例:古希腊斯吉塔拉人亚里士多德(公元前384年~公元前322年)的《工具论》,为形式逻辑奠定了基础。布尔创立的逻辑代数系统,用符号语言描述了思维活动中推理的基本法则,被后世称为“布尔代数”。这些理论基础对人工智能的创立发挥了重要作用。(摘自《人工智能》史忠植编著,第一章 绪论)人工智能的发展历史,可大致分为孕育期,形成期,基于知识的系统,神经网络的复兴和智能体的兴起。具体时期的主要内容在此不必赘述。

人工智能究竟是研究什么的呢?知道了概念,起源,我想更想知道的应该是它对我们自己究竟有什么用。

人工智能是一门新兴的边缘科学,是自然科学和社会科学的交叉学科,它吸取了自然科学和社会科学的最新成果,以只能为核心,形成了具有自身研究特点的新的体系。人工智能的研究涉及广泛的领域,包括知识表示,搜索技术,机器学习,求解数据和知识不确定问题的各种方法等。人工智能的应用领域包括专家系统,博弈,定理证明,自然语言理解,图像理解和机器人等。人工智能也是一门综合性的学科,它是在控制论,信息论和系统论的基础上诞生的,涉及哲学,心理学,认知科学,计算机科学,数学以及各种工程学方法,这些学科为人工智能的研究提供了丰富的知识和研究方法。(摘自《人工智能》史忠植编著,第一章 绪论)具体内容为: 1.认知建模,人类的认知过程是非常复杂的,建立认知模型和技术常称为认知建模,目的是为了从某些方面探索和研究人的思维机制,特别是人的信息处理机制,同时也为设计相应的人工智能系统提供新的体系结构和技术方法;

2.知识表示,人类的智能活动过程主要是一个获得并运用知识的过程,知识是智能的基础。人们通过实践,认识到客观世界的规律性,经过加工整理,解释,挑选和改造而形成知识。为了使计算机具有智能功能,使它能模拟人类的智能行为,就必须使他具有适当形式表示的知识。知识表示是人工智能中一个十分重要的研究领域。

3.自动推理,从一个或几个已知的判断(前提)逻辑地推论出一个新的判断(结论)的思维形式称为推理,这是事物的客观联系在意识中的反映。自动推理是知识的使用过程,人解决问题就是利用以往的知识,通过推理得出结论。自动推理是人工智能研究的核心问题之一。

4.机器学习,机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。只有让计算机系统具有类似人的学习能力,才有可能实现人类水平的人工智能。机器学习是人工智能研究的核心问题之一,是当前人工智能理论研究和实际应用非常活跃的研究领域。

在人工智能研究方面,不仅仅有众多的类别,同时有不同的研究学派。其中有:符号主义学派,连接主义学派,行为主义学派。

符号主义学派,亦称为功能模拟学派。主要观点认为智能活动的基础是物理符号系统,思维过程是符号模式的处理过程。该学派指出:展现一般智能行为的物理系统其充要条件是它是一个物理符号系统。充分性表明智能可以通过任意合理组织的物理符号系统来得到。必要性表明一个由一般智能的主体必须是一个物理符号系统的一个实例。物理符号系统假设的必要性要求一个智能体,不管它是人,外星人还是计算机,都必须通过在符号结构上操作的物理实现来获得智能。

连接主义学派,亦称为结构模拟学派,基于神经元和神经网络的连接机制和学习算法。这种研究方法能够进行非程序的,可适应环境变化的,类似人类大脑风格的信息处理方法的本质和能力,这种学派的主要观点认为,大脑是一切智能活动的基础,因而从大脑神经元及其连接机制出发进行研究,搞清楚大脑的结构以及它进行信息处理的过程和机理,渴望揭示人类智能的奥秘,从而真正实现人类智能在机器上的模拟。

行为主义学派,亦称为模拟学派,认为智能行为的基础是“感知-行动”的反应机制。基于智能控制系统的理论,方法和技术,研究拟人的智能控制行为。

上述三种研究方法从不同的侧面研究了人的自然智能,与人脑的思维模型有着对应的关系。粗略额的划分,可以认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。研究人工智能的三大学派,三条途径各有所长,要取长补短,综合集成。

最为重要的莫过于人工智能的应用,当前,几乎所有的科学与技术的分支都在共享着人工智能领域所提供的理论和技术。在这里将列举一些人工智能经典的,有代表性和有重要影响的应用领域。

1.专家系统

专家系统是一类具有专门知识和经验的计算机智能程序系统通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常有专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。(摘自《人工智能》史忠植编著,第一章 绪论)

2.数据挖掘

数据挖掘是人工智能领域中一个令人激动的成功应用它能够满足人们从大量数据中挖掘出隐含的,未知的,有潜在价值的信息和知识的要求。对数据而言,在他的特定工作或生活环境里,自动发现隐藏在数据内部的,可被利用的信息和知识。要实现这些目标,需要有大量的原始数据,明确的挖掘目标,相应的领域知识,友善的人-机界面,以及寻找合适的开发方式。挖掘结果共数据拥有者决策使用,必须得到拥有者的支持,认可和参与。(摘自《人工智能》史忠植编著,第一章

绪论)

3.自然语言处理

自然语言处理研究计算机通过人类熟悉的自然语言与用户进行听,说,读,写,等交流技术,是一门与语言学,计算机科学,数学,心理学和声学等学科相联系的交叉性学科。自然语言处理研究内容主要包括:语言计算(语音与音位,词法,句法,语义和语用等各个层面上的计算),语言资源建设(计算机词汇学,术语学,电子词典,语料库和知识本体等),机器翻译或机器辅助翻译,汉语和少数民族语言文字输入输出及其只能处理,中文手写和印刷体识别,中文语音识别及文语转换,信息检索,信息抽取与过滤,文本分类,中文搜索引擎和以自然语言为枢纽的多媒体检索等。

4.智能机器人

智能机器人是一种自动化时代的机器,具有相当大的“大脑”,具备一些人或生物相似的智能能力,如感知能力,规划能力,动作能力和协同能力,是一种具有高度灵活性的自动化机器。随着人们对机器人技术智能化本质的认识的加深,机器人技术开始向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知,决策,行动和交互能力的特种机器人和各种智能机器。(摘自《人工智能》史忠植编著,第一章 绪论)

5.模式识别

模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以便对事物或现象进行描述,辨认,分类和解释过程。模式是信息赖以存在和传递形式,诸如波普信号,图形,文字,物体的形状,行为的方式和过程的状态等都属于模式的范畴。人们通过模式感知外部世界的各种事物或现象,这是获取知识,形成概念和作出反应的基础。(摘自《人工智能》史忠植编著,第一章 绪论)

6.分布式人工智能

分布式人工智能研究一组分布的,松散耦合的智能体如何运用他们的知识,技能和信息,为实现各自的或全局的目标协同工作。20世纪90年代以来,互联网的迅速发展为新的信息系统,决策系统和知识系统的发展提供了极好的条件,它们在规模,范围和复杂程度上增加极快,分布式人工智能技术的开发与应用越来越成为这些系统成功的关键。(摘自《人工智能》史忠植编著,第一章 绪论)

7.互联网智能

如果说计算机的出现为人工智能的实现提供了物质基础,那么互联网的产生和发展则成为人工智能提供了更加广阔的空间,成为当今人类社会信息化的标志。互联网已经成为越来越多的“数字图书馆”,人们普遍使用Google,百度等搜索引擎,为自己的日常工作和生活服务。(摘自《人工智能》史忠植编著,第一章 绪论)

8.博弈

博弈是人类社会和自然界中普遍存在的一种现象,如下棋,打牌,战争等。博弈的双方可以是个人,群体,也可以是生物群或智能机器,各方都力图用自己的智慧获取成功或击败对方。博弈过程可能产生惊人庞大的搜索空间。要搜索这些庞大而且复杂的空间需要使用强大的技术来判断备择状态,探索问题空间,这些技术被称为启发式搜索。博弈为人工智能提供了一个很好的实验场所,可以对人工智能的技术进行检验,以促进这些技术的发展。(摘自《人工智能》史忠植编著,第一章 绪论)

人工智能大的方面介绍暂且到此为止。接下来重点介绍模式识别技术。

第二篇 模式识别

模式识别已经成为当代高科技研究的重要领域之一,它已发展成为一门独立的新科学。模式识别技术迅速扩展,已经应用在人工智能,机器人,系统控制,遥感数据分析,生物医学工程,军事目标识别等领域,几乎遍及各个学科领域,在国民经济,国防建设,社会发展的各个方面得到广泛应用,产生了深远的影响。像前一篇一样我们先来介绍模式识别的概念。

模式识别就是机器识别,计算机识别或机器自动识别,目的在于让机器自动识别事物。(摘自《模式识别与智能计算——MATLAB著 第1章 模式识别概述 )

技术实现》杨淑莹识别是对各种事物或现象的分析,描述,判断。模式识别是指在某些一定量度或观测基础上,把待识别模式划分到各自的模式中去,即根据模式的特性,将其判断为某一类。(摘自《模式识别技术及其应用》杨帮华著 第1章 模式识别简介 )

例如手写数字的识别,结果就是将手写的数字分到具体的数字类别中;智能交通管理系统的识别,就是判断是否有汽车闯红灯,闯红灯的汽车车牌号码;还有文字识别,语音识别,图像中物体识别,等等。该学科研究的内容是使机器能做以前只能由人类才能做的事,具备人所具有对各种事物与现象进行分析,描述与判断的部分能力。模式识别是直观的,无所不在的,实际上人类在日常生活的每个环节,都从事着模式识别的活动。人和动物较用意做到的模式识别,但对计算机来说确实非常困难的。让机器能识别,分类,就需要研究识别的方法,这就是这门科学的任务。

模式识别的基本组成: (1)数据获取;

用计算机可以运算的符号来表示所研究的对象,这些可表示的符号包括:二维图像,如文字,指纹,地图,照片等;一维波形,如脑电图,心电图,机械振动波形等;物理参量和逻辑值,如体温,化验数据,参量正常与否的描述。

(2)预处理;

去除信号中噪声,提取有用信息,使信息纯化,或者是对输入测量仪器或其他因素所造成的退化现象进行复原。预处理这个环节内容很广泛,与要解决的具体问题有关,例如,从图像中汽车车牌的号码识别出来,就需要先将车牌从图像中找出来,再对车牌进行划分,将每个数字分别划分开。

(3)特征提取和选择;

要对预处理信号进行交换,得到最能反映分类本质的特征。同时,对特征进行必要的降维处理,将维数较高的测量空间转换到维数较低的特征空间,对所获取的信息实现从测量空间到特征空间的转换。

(4)分类器设计和决策。

分类器设计是指依据特定空间分布,设计及决定分类器的具体参数。主要是指对输入的训练样本,进行预处理,特征提取及选择,在样本训练基础上,确定某判决规划规则或判决函数,使得按这种规则对被识别对象进行分类,所造成的错误识别率最小或引起的损失最小,在设计阶段判决函数需要多次反复进行,直到误差达到一定条件。分类决策是指依据分类器设计阶段建立的预处理,特征提取与选择及判决函数模型,对获取的未知样本数据进行分类识别,把被识别对象归为某一类,输出分类结果

模式识别的特点:

(1)模式识别是用机器模仿大脑的识别过程,设计很大的数据集合,并自动地以高速度做出决策。

(2)模式识别不像纯数学,而是抽象加上实验的一个领域。他的这个性质常常导致不平凡的和比较成效的应用,而应用又促进进一步的研究和发展。由于它和应用的关系密切,因此它又被认为是一门工程学科。

(3)学习(自适应性)是模式识别的一个重要的过程和标志。但是,编制学习程序比较困难,而有效地消除这种程度中的错误更难,因为这种程序是有智能的。

(4)同人的能力相比,现有的模式识别能力仍然是相当薄弱的(对图案和颜色的识别除外),机器通常不能应付大多数困难问题。采用交互式别法可以在较大程度上克服这一困难,当机器不能做出一个可靠的决策时,它可以求助于操作人。(摘自《模式识别技术及其应用》杨帮华著 第1章 模式识别简介 )

模式识别的主要方法: 1.统计决策法

(1)参数方法。主要以贝叶斯决策准则为指导。其中最小错误率和最小风险贝叶斯决策是最常用的两种方法。

(2)非参数方法。沿参数方法这条路走就要设法获取样本统计分布的资料,要知道先验概率,类分布概率密度函数等。然而在样本数目不足条件下要获取准确的统计也是困难的。这样一来人们考虑走另一条道路,即根据训练样本集提供的信息,直接进行分类器设计。这种方法绕过统计分布状况的分析和参数估计,而企图对特征空间实行划分,称为非参数判别分类法,即不依赖统计参数的分类法。这是当前模式识别中主要使用的方法,并且涉及人工神经元网络与统计学习理论等多方面。 2.结构模式识别

结构模式识别是利用模式的结构描述与句法描述之间的相似性对模式进行分类。每个模式由它的各个子部分(称为子模式或模式基元)的组合来表示。对模式的识别常以句法分析的方式进行,即依据给定的一组句法规则来剖析模式的结构。当模式中每一个基元被辨认后,识别过程就可通过执行语法分析来实现。选择合适的基元是结构模式识别的关键。 3.模糊模式识别

所谓的模糊模式识别就是解决模式识别问题时引入模糊逻辑的方法或思想。同一般的模式识别方法相比较,模糊模式识别具有客体信息表达更加合理,信息利用充分,各种算法简单灵巧,识别稳定性好,推理能力强的特点。 4.人工神经网络模式识别

模拟动物神经系统的某些功能,采用软件或硬件的办法,建立了许多以大量处理单元为结点,处理单元间实现(加权值的)互联的拓扑网络,进行模拟,称之为人工神经网络。这种方法可以看作是对原始特征空间进行非线性变换,产生一个新的样本空间,使得变换后的特征线性可分。同传统统计方法相比,其分类器是与概率分布无关的。人工神经网络的主要特点在于其具有信息处理的并行性,自组织和自适应性,具有很强的学习能力和联想功能以及容错性能等,在解决一些复杂的模式识别问题中显示出其独特的优势。 模式识别的典型应用和发展: 1.文字识别

目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写识别的难度高于印刷体识别,而在手写识别中,脱机手写体的难度又远远超过了联机手写识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。 2.语音识别

语音识别技术所涉及的领域包括信号处理,模式识别,概率论和信息论,发声机理和听觉机理,人工智能等。 3.指纹识别

指纹识别的方法有很多,大致可以分为四类:基于神经网路地方法,基于奇异点的方法,语法分析地方法和其他方法。 4.细胞识别

基于图像区域特征,利用计算机技术对显微细胞图像进行自动识别越来越受到大家的关注,并且现在也获得了不错的效果。 5.医学诊断

在癌细胞检测,X射线照片分析,血液化验,血液分析,染色体分析,心电图诊断和脑电图诊断等方面,模式识别已取得了成效。 6.军用目的的自动识别 如雷达探测目标的自动识别,自动跟踪,卫星照片的自动识别等。 7.生物认证技术

生物认证技术是21世纪最受关注的安全认证技术之一,它的发展是大势所趋。人们愿意忘掉所有的密码,扔掉所有的磁卡, 凭借自身的唯一性标识身份与保密。 8.数字水印技术

IDC预测,数字水印技术在未来的5年内全球市场规模超过80亿美元.

模式识别的发展,模式识别是一个交叉,综合的科学技术领域,不仅与其他信息学科而且还包括数理科学,生命科学,地球科学,工程与材料科学,管理科学,环境科学的相互作用和渗透越来越高,其科学界限很可能随着发展而逐渐模糊。其发展离不开应用和工程,离不开国家目标。因此,其科学技术内涵与外延应该与时俱进,更新和扩展,研究的方向与内容应该更具有综合性,交叉性,更强调国家目标的实现,解决国家急需的重大问题,重大关键技术攻关和社会发展中的科学技术难题和基础理论问题。

模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把人工神经网络与各种已有技术以及人工智能中的专家系统,不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

模式识别是一项全新的高科技的技术,我们实践团队虽然在了解这个技术做了很多努力,但是毕竟了解到的也只是皮毛而已。在这个科技突飞猛进的时代,每天都更新着不同的技术,只有不断地去学习,才能适应这个社会,适应这个时代。模式识别的了解学习报告暂时告一段落,接下来我们将进入中科院,采访专业人士,来解决我们的困惑。

第二篇:模式识别总结

监督学习与非监督学习的区别:

监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

1、写出K-均值聚类算法的基本步骤, 算法:

第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。 第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。 假设i=j时,Dj(k)min{xzi(k),i1,2,K},则xSj(k),其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。 第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K zj(k1)1NjxSj(k)x,j1,2,,K 求各聚类域中所包含样本的均值向量:

其中Nj为第j个聚类域Sj中所包含的样本个数。以均值向量作为新的聚类中心,

JjxSj(k)xzj(k1),2j1,2,,K可使如下聚类准则函数最小:

在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。 第四步:若zj(k若zj(k 1)zj(k),j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;

1)zj(k),j=1,2,…,K,则算法收敛,计算结束。

T线性分类器三种最优准则:

wSFisher准则:maxJ(w)wSwFTbwww根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。

什么是特征选择?. 什么是Fisher线性判别?

答:1. 特征选择就是从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的。

2. Fisher线性判别:可以考虑把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维,这在数学上容易办到,然而,即使样本在d维空间里形成若干紧凑的互相分得开的集群,如果把它们投影到一条任意的直线上,也可能使得几类样本混在一起而变得无法识别。但是在一般情况下,总可以找到某个方向,使得在这个方向的直线上,样本的投影能分开得最好。问题是如何根据实际情况找到这条最好的、最易于分类的投影线,这就是Fisher算法所要解决的基本问题。

请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。 信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。预处理:去除噪声,加强有用的信息,并对输入测量仪器或其他因素造成的退化现象进行复原。特征选择和提取:为了有效地实现分类识别,就要对原始数据进行变换,得到最能反映分类本质的特征。分类决策:在特征空间中用统计方法把识别对象归为某一类。

定性说明基于参数方法和非参数方法的概率密度估计有什么区别?

答:基于参数方法:是由已知类别的样本集对总体分布的某些参数进行统计推断 非参数方法:已知样本所属类别,但未知总体概率密度函数形式 简述支持向量机的基本思想。

答:SVM从线性可分情况下的最优分类面发展而来。最优分类面就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。SVM考虑寻找一个满足分类要求的超平面,并且使训练集中的点距离分类面尽可能的远,也就是寻找一个分类面使它两侧的空白区域(margin)最大。过两类样本中离分类面最近的点,且平行于最优分类面的超平面上H1,H2的训练样本就叫支持向量。

(1)贝叶斯估计算法思想:准则,求解过程

(A)准则:通过对第i类学习样本X的观察,使概率密度分布P(X/θ)转化为 后验概率P(θ/X) ,再求贝叶斯估计;

(B)求解过程: ① 确定θ的先验分布P(θ),待估参数为随机变量。

② 用第i类样本x=(x1, x2,…. xN)求出样本的联合概率密度分布P(x|θ),它是θ的函数。

i

T

ii

i

i

P(|X) ③ 利用贝叶斯公式,求θ的后验概率

iP(Xi|).P()

P(Xi|)P()d ④ 求贝叶斯估计P(|Xi)d

2、模式识别系统的基本构成单元包括: 模式采集 、 特征提取与选择 和 模式分类 。

3、统计模式识别中描述模式的方法一般使用 特真矢量 ;句法模式识别中模式描述方法一般有 串 、

树 、 网 。

4、聚类分析算法属于 无监督分类

;判别域代数界面方程法属于统计模式识别方法 。

5、若描述模式的特征量为0-1二值特征量,则一般采用 匹配测度 进行相似性度量。



6、下列函数可以作为聚类分析中的准则函数的有

、、、、、、

7、Fisher线性判别函数的求解过程是将N维特征矢量投影在 一维空间 中进行 。

8、下列判别域界面方程法中只适用于线性可分情况的算法有 感知器算法 ;线性可分、不可分都适用的有

积累位势函数法 。

9、影响层次聚类算法结果的主要因素有( 计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(平移不变性、旋转不变性);马式距离具有(平移不变性、旋转不变性尺度缩放不变性、不受量纲影响的特性)。

11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。)

12、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况)

K(x)位势函数K(x,xk)与积累位势函数K(x)的

~xkXkK(x,xk)



13、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于( 某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于( 先验概率未知的)情况。

14、特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m>n )的条件下,可以使用分支定界法以减少计

m算量。

15、散度Jij越大,说明i类模式与j类模式的分布(差别越大);当i类模式与j类模式的分布相同时,Jij=(0)。

16、影响聚类算法结果的主要因素有(②分类准则 ③特征选取 ④模式相似性测度。)。

19、模式识别中,马式距离较之于欧式距离的优点是(③尺度不变性 ④考虑了模式的分布)。 20、基于二次准则函数的H-K算法较之于感知器算法的优点是(①可以判别问题是否线性可分 ③其解的适应性更好)。

21、影响基本C均值算法的主要因素有(④初始类心的选取 ①样本输入顺序 ②模式相似性测度)。

22、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(②后验概率 ④类概率密度与先验概率的乘积)。

23、统计模式分类问题中,当先验概率未知时,可使用(②最小最大损失准则 ④N-P判决)

24、在(①Cn>>n,(n为原特征个数,d为要选出的特征个数)③选用的可分性判据J对特征数目单调不减)情况下,用分支定界法做特征选择计算量相对较少。

25、 散度JD是根据(③类概率密度)构造的可分性判据。

26、似然函数的概型已知且为单峰,则可用(①矩估计②最大似然估计③Bayes估计 ④Bayes学习⑤Parzen窗法)估计该似然函数。

27、Kn近邻元法较之Parzen窗法的优点是(②稳定性较好)。

28、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(①变换产生的新分量正交或不相关③使变换后的矢量能量更趋集中)。

29、一般,剪辑k-NN最近邻方法在(①样本数较大)的情况下效果较好。 d

29、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(②分类准则 ③特征选取)。 30、假设在某个地区细胞识别中正常(w1)和异常(w2)两类先验概率分别为 P(w1)=0.9,P(w2)=0.1,现有一待识别的细胞,其观察值为x,从类条件概率密度分布曲线上查得P(xw1)0.2,P(xw2)0.4,并且已知110,126,211,220

试对该细胞x用一下两种方法进行分类: 1. 基于最小错误率的贝叶斯决策; 2. 基于最小风险的贝叶斯决策; 请分析两种结果的异同及原因。

第三篇:模式识别报告格式

一、封皮的填写:实验课程名称 模式识别

二、实验名称:按顺序填写图像的贝叶斯分类、K均值聚类算法、神经网络模式识别

三、年月:2013年4月

四、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。

五、书写要求:

1、报告可以手写也可以打印。

2、实验图像及结果图像打印,图像均位于实验结果与分析部分,图像打印于纸张上部,下部为实验分析。

3、报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号,具体格式参照毕业设计手册。不合格者扣除相应分数。

4、每个实验均需另起一页书写。

六、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理,不再另行通知修改。

实验

一、 图像的贝叶斯分类

一、实验目的

将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D

538、MATLAB

三、实验原理

以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。

四、实验步骤及程序

实验步骤、程序流程、实验源程序齐全。

五、实验结果与分析

要求写明实验得到的分割阈值,附分割效果图。对实验结果进行分析,说明实验结果好或者不好的原因,提出改进措施。

(另起一页)

实验

二、K均值聚类算法

一、实验目的

将模式识别方法与图像处理技术相结合,掌握利用K均值聚类算法进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D

538、MATLAB、WIT

三、实验原理

以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。

四、实验步骤及程序

实验步骤、程序流程、MATLAB及WIT实验源程序齐全,WIT聚类程序可以图像形式

附于报告上。

五、实验结果与分析

以MATLAB和WIT分别实现K均值图像聚类算法,写明聚类类别数、聚类中心、迭代次数、运行时间,附原始图像和分类结果图像,并做实验分析。

(另起一页)

实验

三、神经网络模式识别

一、实验目的

掌握利用感知器和BP网进行模式识别的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D

538、MATLAB

三、实验原理

以自己的语言结合课堂笔记及相关资料进行总结,要求过程推导清晰明了。

四、实验步骤及程序

感知器实验:

1、设计线性可分实验,要求训练样本10个以上

2、奇异样本对网络训练的影响

3、以线性不可分样本集训练分类器

BP网实验:利用BP网对上述线性不可分样本集进行分类

五、实验结果与分析

写明迭代次数、训练时间,附分类界面效果图,并讨论奇异样本对分类器训练的影响。

第四篇:模式识别与智能系统

所属院系:自动化科学与工程学院

一、学科概况

模式识别与智能系统是在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。模式识别与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。研

二、培养目标正门

本学科培养从事模式识别与智能系统的研究、开发、设计等方面工作的高级专门人才。业

1.博士学位 应具有模式识别、信息处理、人工智能与认知学及有关数学领域坚实宽广的基础理论和系统深入的专门知识;对于模式识别与智能系统主要前沿领域有深入了解;能独立开展模式识别与智能系统中有关研究方向的专题研究工作,并取得具有创造性研究成果;学风严谨,至少掌握一门国资语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。

2.硕士学位 应具有坚实的模式识别与智能系统学科的基础理论和系统的专门知识;对于模式识别与智能系统某一研究领域的进展和学术动态有较深的了解;能够熟练利用计算机解决本学科的有关问题;具有从事模式识别与智能系统中的某一研究方向的科学研究或独立担负专门技术工作的能力,并取得有意义的成果;较为熟练地掌握一门国资语。、

三、业务范围、

1.学科研究范围 模式识别,图象处理与分析,计算机视觉,智能机器人,人工智能,计算智能,信号处理。

2.主要课程设置 线性系统理论,矩阵分析,优化理论,数理逻辑,数字信号处理,图象处理与分析,模式识别,计算机视觉,人工智能,计算智能,非线性理论(如分形、混沌等)控制理论,系统分析与决策,计算机网络理论等。

四、主要相关学科

控制理论与控制工程,计算机科学与技术,信息与通信工程,电子科学与技术,生物学,心理学。

该学科培养的研究生毕业后,可到大、中、小型企业,科技部门,高等院校,金融、电讯单位,政府机关等各行业从事自动化和系统工程相关的科研、开发、设计、研制、生产与管理等工作。考

第一, 安阳县电业管理公司是严谨,规范的国资企业。尽管安阳县电业管理公司已经不是真正的国资企业,但是“国资企业”除了意味着享受优惠政策外,其真正含义在于,企业要严格按照国际惯例运作,建立完善的法人治理结构。前几年公司成立为股份有限公司,国家吃多半股份,放股给民众。股东是公司企业产权的拥有者,也可以说是企业的“老板”,公司的盈利或亏损全部由股东享受或承担。企业必须以感激地心态善待股东,正是由于股东投资办企业,才给了大家就业的机会,让员工能够过上稳定的生活,同时也为有志青年提供了充分体现和提升个人价值的机会。否则,你就是才高八斗,也是英雄无用武之地。古有萧何追韩信;没有刘备三顾茅庐,诸葛亮也永远只能是卧龙岗的一个学究。因此,每一个企业员工都应该将对股东的感激之情转化为工作的激情和动力,积极主动地做好每一件事,追求最好的工作业绩,以回报股东。安阳县电业管理公司是有着深厚文化底蕴和人性化管理的优秀企业。安阳县电业管理公司在关注股东价值的同时,对员工价值也给与了充分的肯定。

第二, 安阳县电业管理公司有恒久的价值判断标准:持久不断地创造价值。安阳县电业管理公司崇尚业绩,没有业绩的公司是没有生命力的。安阳县电业管理公司由原县电业局转型,强化以业绩为导向的价值取向,把业绩作为价值的衡量标准。“我们要让公司创造价值的员工享受体面的生活,让取得优异业绩的员工赢得人们的尊重”,安阳县电业管理公司致力于成本领先,低成本领先是放利给人民,获取生存和发展空间的根本策略,也是实现企业目标,实践企业使命的最重要的动力。电力企业属于资金密集型行业,这种密集主要体现在电力建设的投资巨大。因此,在建设中,应千方百计控制工程耗费和协调各方力量缩短建设工期,从源头降低公司的建设成本和经营固定成本,抢得竞争先机。而且在运营中,必须降低燃料的运输及治理费用,最低化变动成本,获得竞争优势,这也是检验企业专业化水平的重要标准。此外,充分发挥脱硫项目,做好保护环境的工作,发挥高技术成果并争取合理补偿,以提高营业能力,也将有助于使企业在同行中脱颖而出;安阳县电业管理公司具有强烈的市场意识,这也是创造价值不可或缺的重要因素。安阳县电业管理公司是由市场促生的商业化公司,因市场需要而存在。依市场要求运作,其精髓是合理和整合市场资源,并以市场标准来评价其优劣。

第三, 安阳县电业管理公司有凝聚力的企业精神:诚信,团队,务实,积极,专业,创新。诚信,为人之本,立业之本,是公司的基本精神,坚守诚信原则,重视个人操守,加强互信关系,巩固卓越商誉;团队,事业成功的保障,尊重不同文化,包容各种观念,倡导平等沟通,发挥团队精神;务实,对待工作应有的科学态度,激励奋发精神,壮大企业根基,奠定领导地位;积极,掌握主动地关键,积极迎接挑战,勇于面对改变,主动学习新知识;专业,公司持续成长的正确方向,整合丰富资源,荟萃各方精英,积累中外经验,提升专业水平;创新,不断适应新的经营模式是企业的不竭源泉,经营开放环境,鼓励创新思路,构思非凡理念,推动企业发展。

第四, 安阳县电业管理公司有特色鲜明的管理模块:基于务实,前瞻思维的管理行为。生产管理:安阳县电业管理公司坚持以成熟,先进的技术手段和科学的运作模式为支撑,不断强化包括人力资源在内的各种生产力,最大力度提高生产效能。每一岗位必须信守“按章办事”的承诺,工作严谨规范,确保生产过程的安全,稳定;营销管理:客户的要求是企业行动的准则也是企业发展的根本动力。安阳县电业管理公司重视客户关系,引入客户关系,对不同客户的特点实施有针对性地营销方案,满足客户期望,提升客户价值。广义的说,电网,政府及终端用户等利益相关者都是使电力业务对客户依赖的唯一性,决定了对客户服务的纵深程度要远远大于别的行业。电力营销的最终结果,将能够提高企业的合理回报。以上四点是我在安阳县电业管理公司实习时的深切体会,安阳县电业管理公司的企业精神值得我们思考和学习!而且,我发现安阳县电业管理公司员工的职业素养也很高。我觉得一个人的职业素养除了应具备专业的知识外,还应当包括两个方面:敬业精神和合作精神。电力部门重要的发电设备的正常运行需要各机组的协调合作,而有的高压水泵, 溢流水泵, 轴封水泵等却是比较容易坏的,这个时候就需要强烈的敬业精神。高压水泵漏水了,修理的员工们穿着闷热的工作服在现场维修着,现场是没有空调的,而且机器的运作声音很大,夏天长时间呆在工作现场使员工们的衣服都被汗水浸湿了。明明可以交给别的部门做的事,明明可以不需要继续工作了,可是他们还坚持把问题全都解决掉:等其他部门来的话就浪费了宝贵的时间了!而且,维修时也需要团队精神,我说过,现场的噪声很大,彼此讲话要很大声才能听见。可是,他们却不需要大叫。一个手势,一个眼神,同事们就明白了你的意思,这个不是只有团队合作才能做到的事吗?而且,当有人收到责任单时,我没看见暴跳如雷的抱怨和不满,我看见的是立即签单和着手改善事项的合作态度。其实,责任单上的错误不一定是当事人犯的,可是他为了小组为了同事,竟然去签单!这种精神,难道不值得我们学习吗?还有之后的改进措施,步步到位,没有任何推托。在这里我觉得稽核小组也应该负责到位,

开单要有根据,只有这样才能共同把企业做大做强!

通过这次的暑假实践,我学到了很多无法在书本上学到的知识和企业经营的实际经验,感谢安阳县电业管理公司给我的机会!

第五篇:2014模式识别课程设计

【设计题目】

自选

【设计目标】

通过本课程设计,学习利用非监督学习方法对生活中的实际问题进行识别分类,掌握模式识别系统的基本设计思路与步骤。

【设计内容】

观察生活与环境,自选一个问题,采用一种非监督学习方法对其进行分类与识别。

【设计要求】

提交设计报告,报告内容包括:问题描述,选用某种方法的理由,模式采集,特征提取与选择,分类器设计,学习过程,测试结果,结果分析(含不足与展望),设计总结。程序代码作为附录与报告一起提交。报告正文部分不超过10页,文字部分不超过1万字。

1模式识别在发动机故障诊断中的应用 模式识别受体在慢性阻塞性肺疾病中的作用

基于模式识别的短时交通流预测Fault Mode Diagnosis System Based on for Automobile ABS Nerve Network

平行路段模式识别与简化初探 - Primary study on recognition and simplification of parallel sections in road networks

上一篇
下一篇
返回顶部