碳纤维导线的应用前景
第一篇:碳纤维导线的应用前景
ACCC碳纤维复合芯导线
ACCC碳纤维复合导线是目前全世界电力输变电系统理想的取代传统的钢芯铝铰导线、铝包钢导线、铝合金导线及进口殷刚导线的新产品,ACCC碳纤维复合导线与传统导线相比具有重量轻、强度大、低线损、弛度小、耐高温、耐腐蚀、与环境亲和等优点,实现了电力传输的节能、环保与安全。
ACCC碳纤维复合芯导线系列主要优点是:
1.强度为普通导线的2倍。普通钢丝的抗拉强度为1240Mpa-1410Mpa,而ACCC导线的碳纤维混合固化芯棒,是前者的两倍。
2.导电率高,节能6%。由于ACCC导线不存在钢丝材料引起的磁损和热效应,而且在输送相同负荷的条件下,具有更低的运行温度,可以减少输电损失约6%。
3.低弧垂,降低2倍以上垂度。ACCC导线与ACSR导线相比具有显著的低弛度特性,在高温条件下弧垂不到钢芯铝绞线的1/2,能有效减少架空线的绝缘空间走廊,提高了导线运行的安全性和可靠性。
4.重量轻10-20%。碳纤维复合芯导线的比重约为钢的1/4,在相同的外径下,ACCC的铝截面积为常规ACSR导线的1.29倍。ACCC导线单位长度重量比常规ACSR导线轻10-20%,显示了ACCC导线重量轻的优点。
5、耐腐蚀,使用寿命高于普通导线的2倍。碳纤维复合材料与环境亲和,同时避免了导体在通电时铝线与镀锌钢线之间的电化腐蚀问题,有效地延缓导线的老化,使用寿命高于普通导线的2倍。
6、同样容量线路投资成本低于普通导线。由于ACCC碳纤维复合导线倍容量运行,而且抗拉强度高、弛度小、重量轻等特点,可使杆、塔之间的跨距增大,高度降低,同样容量线路成本比普通导线低。
7、节约一半铝材的消耗。按每年电力电路200万吨铝用量计算,能节约铝材近100万吨。从保护环境、改善人类生态环境方面来说,具有划时代的意义
碳纤维复合材料的应用及其在电线电缆中的发展建议
星期一 2007年1月15日 0:00:00 来源:中国电线电缆网
一、碳纤维复合材料的发展和战略地位
碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。经过二十多年的发展,碳纤维及其复合材料已从初创期转入增长发展期,其工业地位已基本确立,美、日、英、法、德等国的碳纤维产量已经占世界产量的绝大部分,并已逐步形成垄断优势。
我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。
二、碳纤维复合材料的性能和用途
碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的强度,且碳纤维比重小。
1、碳纤维的化学性能
碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。
2、碳纤维的物理性能
(a) 热学性质
碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而变化。 (b) 导热性质
碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美。
(c) 电学性质
碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。
3、碳纤维的主要用途
与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。
最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。
总结碳纤维复合材料的现实应用有以下几个方面:
(1)宇航工业 用作导弹防热及结构材料如火箭喷管、鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、卫星-火箭结合部件;航天飞机机头,机翼前缘和舱门等制件;哈勃太空望远镜的测量构架,太阳能电池板和无线电天线。
(2)航空工业 用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有C/C刹车片。
(3)交通运输 用作汽车传动轴、板簧、构架和刹车片等制件;船舶和海洋工程用作制造渔船、鱼雷快艇、快艇和巡逻艇,以及赛艇的桅杆、航杆、壳体及划水浆;海底电缆、潜水艇、雷达罩、深海油田的升降器和管道。
(4)运动器材 用作网球、羽毛球、和壁球拍及杆、棒球、曲棍球和高尔夫球杆、自行车、赛艇、钓杆、滑雪板、雪车等。
(5)土木建筑 幕墙、嵌板、间隔壁板、桥梁、架设跨度大的管线、海水和水轮结构的增强筋、地板、窗框、管道、海洋浮杆、面状发热嵌板、抗震救灾用补强材料。
(6)其它工业 化工用的防腐泵、阀、槽、罐;催化剂,吸附剂和密封制品等。生体和医疗器材如人造骨骼、牙齿、韧带、X光机的床板和胶卷盒。编织机用的剑竿头和剑竿防静电刷。其它还有电磁屏蔽、电极度、音响、减磨、储能及防静电等材料也已获得广泛应用。
三、碳纤维复合材料在电线电缆中的应用
碳纤维以其固有的特性赋予了其复合材料优异的性能,它具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,从而为其在电线电缆行业中的应用提供了可能和必然。
(一)碳纤维加热电缆的开发和应用
人们早就知道,以金属材料为发热体的电加热技术已在各个领域得到了广泛的应用。但是金属丝在高温状态下表面易氧化,由于氧化层不断的增厚,造成了有效通过电流的面积减小,增大了电流的负荷,因此易烧断。在相同的允许的电流负荷面积下,金属丝的强度比碳纤维低6-10倍,在使用过程中易折断。
碳纤维是一种石墨的六方晶格层状结构组成,是一种全黑体材料,因此在电热应用中,表现出来的电热转换效率高。在特定的条件下,高温不氧化,单位面积的电流的负荷强度和机械强度不发生改变。
目前碳纤维加热电缆的应用如下: 低温辐射发热电缆地板采暖系统。
恒温育雏箱、花房、苗圃、蔬菜大棚等保温采暖。
道路化雪、机场跑道化雪:用于混凝土结构中楼面加热的理想产品,也可以用在融雪装置中,对屋面雨水和排水管进行防霜,还可以用于土壤加热。
管道、罐体保温防冻:电伴热产品近几年在中国得到了大力的推广和广泛的应用。其应用领域主要集中在石油、化工、电力、铁路和民用或商业建筑等。随着中国电力工业的发展,以清洁、无二次污染的电能为主要能源的电伴热产品市场前景非常广阔,同时,也为电伴热产品的性能提出了更高的要求。
足球场草坪、公共绿地土壤保温:太阳能热水器电能补充加热器,主要用于在长期阴雨天或寒冬季节,因光照不足而导致太阳能热水器水温不能满足生活、工程需要时,为补充热能而设计的。它具有较强的耐酷暑、严寒和高温潮湿环境的性能,并具有防干烧的功能。即使偶尔水箱缺水误通电,也不至于烧坏电加热器和水箱,故能确保安全使用。
(二)碳纤维复合芯导线的开发和应用
我国是个缺电的国家,不仅发电业的发展滞后,输电业的弊端也凸现出来,输电线路已不堪承受传输容量快速扩容的需求,由于过负荷造成的停电、断电故障频频发生,电力传输成为电力工业发展的“瓶颈”,各国均在研究新型架空输电路用导线,以取代传统的钢芯铝绞线,碳纤维复合芯导线由此应运而生。
与钢芯铝绞线相比,碳纤维复合芯导线具有以下优点:
1、和同样直径的ACSR电缆相比,可以提供双倍的载流容量。 2、有效解决电缆下垂问题。
3、可以在更高的温度下工作,最高可达200摄氏度。 4、线芯可以抗腐蚀,而且没有双金属间腐蚀问题。
5、因为可以提供更高的载流容量,所以同时也有效的降低了工程成本。 6、与相同直径传统电缆相比可以多容纳28%的导体。
7、高强度线芯可以有效减少电缆架的数量,或降低电缆架的高度。 8、有效减少电缆下垂,使地面生物更加安全 。
除了上述提及的优点外,还可减少传输中电力的损耗,减少20%的塔杆,节省用地,减少有色金属资源消耗,有助于构造安全、环保、高效节约型输电网络。
目前世界上只有美国和日本开发出这种新型导线,他们还达成默契:不向第三国输出,日本一家碳纤维导线企业的产量就占到世界40%左右。
目前我国电线电缆研究所、电力建筑研究院以及国家电网有限公司都已经开始了对ACCC导线的试验研究工作。国内电缆厂家也加大与外方合作,将这种新型电缆引进到中国生产,积极推动我国架空输电线路的技术革命。最近福建电网已经将该新型导线架设运行。
(三)在高低温、腐蚀等苛刻环境应用的可能
碳纤维细如蛛丝,三型碳纤维比强度是钢的62倍以上,成形工艺性好,是一代新型工程材料,其弹性量高,抗变性能力比钢大2倍多,抗拉强度30~40t/cm2pa,而比重还不到钢的四分之一,是铝合金的二分之一,高弹模量比钢铁大16倍,比铝合金大12倍。且碳纤维比钢等柔软。因此,碳纤维可用于要求能承重、不易损伤内部元件的电缆的加强芯,如海底光缆等。
碳纤维可以耐-180℃的低温,在此条件下,许多材料都变的很脆,连坚固的钢铁也变的比玻璃还容易碎,而碳纤维在此条件下依旧很柔软。因此,碳纤维复合芯可用于极寒(如南极考察研究等)条件下输电载体的设计和制造。
碳纤维又可以耐3000℃~3500℃的高温,在此高温下最好的耐热钢也变成钢水,但在没有氧气的情况下,碳纤维没有变化。碳纤维即使从3000℃的高温快速冷却到室温也不会炸裂,因而可在急冷急热的环境中工作。这为钢铁、冶金、锅炉等行业中高温特高温场合电缆的设计提供了可能。此外,碳纤维纱、碳纤维绳、碳纤维布都可用于消防电缆产品的设计选用。
碳纤维有超强的耐腐蚀性。金属中耐腐蚀性最强的是黄金和铂,在一份硝酸(浓度70%)和三份硫酸(浓度39%)配成的称“王水”的溶液中黄金、铂会被腐蚀的千疮百孔,而“王水”中的碳纤维却安然无恙。为各种化学环境下轻型耐化学腐蚀电缆的设计提供了新的思路。
四、发展建议
碳纤维材料的产业化是实现碳纤维导线在国内输电行业的产业化的前提和保证。碳纤维材料价格则是制约产业化应用的关键。
我国从八十年代初期开始起步,加大了对碳纤维材料的研究和开发力度,并也着力于碳纤维材料产业化基地的建设,但由于国外设备、技术封锁,至今未见重大突破,产品质量不稳定性,预计今后每年至少一万吨的缺口。
2000年前碳纤维材料的价格水平为5万美圆/吨左右,比铝的价格要高20倍多。但是近两年,由于国际政治形势和军事格局的变化,碳纤维材料价格受其影响,大幅度上升。这无疑都将对我国现代化的建设成本形成巨大的压力和负担。最近,我国福建电网从美国复合材料工程公司(CTC)购置了60公里ACCC导线(铝导体复合芯架空导线)应用在福建省厦门和福州电网中,其价格水平为15万元人民币/公里。这比我们一直使用的钢芯铝绞线的价格要高几倍。
各科研院所应进一步加大碳纤维材料的基础应用研究和开发,建立我国自主知识产权,实现碳纤维材料的质量稳定,降低成本。同时要采用国家投入和民间投入相结合的方式,加大碳纤维在航天和军工以外的民品应用,有助于碳纤维产业的健康持续发展。
最近,我国国内碳纤维产业发展面临重大机遇。辽宁圣华科技有限公司落户抚顺经济开发区后,可以把现有抚顺部分企业培育成碳纤维及复合材料的龙头企业,发挥其带动和辐射功能,把抚顺建设成为全国碳纤维研发基地和产业基地。
目前我国电线电缆研究所、电力建筑研究院以及国家电网有限公司都已经开始了对ACCC导线的试验研究工作。 希望国内同行积极研究和开发,为加快碳纤维复合材料在我国线缆行业应用和产业化发展共同努力。
江苏亨通电力电缆有限公司 副总工程师 王永忠
新型材料的输电技术
星期一 2007年1月15日 0:00:00 来源:中国电线电缆网
随着电源容量、用电需求的迅速增长以及资源能源的日益紧张和环境保护的限制不断加大,需要新建线路或改造已有线路,进一步提高电网的输电能力,尤其在经济发达地区,这个问题就更加突出。低损耗、环保型、节约型、大容量的新型材料输电技术随着科学技术、材料技术、制造水平以及工艺水平的不断提高,将发挥越来越重要的作用。
一、新型导线技术: 1. 全铝合金导线
目前在西欧、北欧、北美、日本、南亚等国家,铝合金导线作为架空输电线路已广泛应用,但我国目前应用量还不到1%。全铝合金导线与目前普通采用的钢芯铝绞线(ACSR)相比,具有弧垂特性高、耐腐蚀、表面耐损伤、伸长率大、线损小以及抗蠕变性能好等优点。 2. 耐热铝合金导线
上世纪60年代日本研制了耐热铝合金导线,其连续运行温度及短时允许温度比常规ACSR要提高60℃,分别为150℃和180℃,从而大大提高了输电能力。耐热铝合金是由EC级铝、少量锆和其他元素组成,具有较高的重结晶温度,所以耐热铝合金连续工作温度可达150℃,载流量可提高1.4~1.6倍。同时加锆对改善导线的耐软化性和耐蠕变性有显著的效果。为减少电腐蚀,钢芯采用铝包钢。
3. 倍容量导线
倍容量导线也叫超耐热铝合金导线。该导线除具有耐热铝合金导线的优点外,最大的特点为导线允许温度可达230℃,载流量提高约2倍;导线钢芯采用铝包INVAR线,显著地限制了导线弧垂。倍容量导线的线径、质量、张力、弧垂等特性与常用的ACSR基本相同,所以线路改造时,原有杆塔、基础可完全利用。 4. 新型复合材料合成芯导线
随着材料技术的不断进步,20世纪末人们尝试用有机复合材料代替金属材料制作导线的芯材,开发出了新型复合材料合成芯导线。这种导线充分发挥了有机复合材料的特点,与目前各种架空导线相比,具有重量轻、强度高、热稳定性好、驰度低、载流量大、耐腐蚀的特点,从节能、节地、节材、环保、提高输电能力等方面看,具有很好的应用前景,特别适用于老线路的改造。
20世纪90年代日本开发了复合材料合成芯导线,产品分为碳纤维芯铝绞线(ACFR)和耐热碳纤维芯耐热铝合金绞线(TACFR)两种,前者在实际线路试验了4年多。复合材料芯线主要由碳纤维和热硬化性树脂构成。用12000根直径为7μ的PAN系碳纤维涂上未硬化的热硬化性树脂绞在一起,在缠上有机纤维形成一根股线,然后用7根股线绞成合成绞线。再经过最后的热处理使树脂完全硬化,最后形成复合材料芯线。复合材料芯线质量是常规钢芯的约1/5,线膨胀系数约为1/12。试验证明,这种新型复合材料芯导线的抗拉强度远远超过了ACSR,在常温下的应力——伸长特性呈现弹性体,没有塑性变性,破断时的伸长量比钢绞线小,约为1.6%。耐热性基本与ACSR相同。
美国新型复合材料合成芯导线开发研究较为成功的是CTC公司,2003年该公司又推出了型号为ACCC的复合材料合成芯导线——碳纤维复合芯铝绞线。它的芯线是由碳纤维为中
字体:大 中 小 心层和玻璃纤维包覆制成的单根芯棒,碳纤维采用聚酰胺耐火处理、碳化而成;高强度、高韧性配方的环氧树脂具有很强的耐冲击性、耐抗拉应力和弯曲应力。将碳纤维与玻璃纤维进行预拉伸后,在环氧树脂浸渍,然后在高温模子中固化成型为复合材料芯线。芯线外层与邻外层为梯形截面铝线股。导线已完成常规的型式试验,具有良好的机械特性和电气特性。于2004年8月在德克萨斯州的实际线路上安装了3.22km,开始为期2年多的各种现场试验。
ACCC复合材料合成芯导线的特点是:
1. 强度大。ACCC导线的抗拉强度为2399Mpa,是一般钢丝抗拉强度的1.97倍,是高强度钢丝的1.7倍。试验证明其破断力比常规ACSR提高了30%。
2. 导电率高,载流量大。由于复合材料不存在钢丝材料引起的磁损和热效应,而且输送相同电力的条件下,具有更低的运行温度,可以减少输电线损6%左右。另外,相同直径时ACCC导线的铝材截面积为常规ACSR的1.29倍。因此可以提高载流量29%。在180℃条件下运行,其载流量理论上为常规ACSR的两倍。
3. 线膨胀系数小,驰度小。ACCC导线与ACSR导线相比具有显著的低驰度特性,在相同的试验条件下,温度从26.1℃上升到183℃时,常规ACSR导线的驰度从236mm增加到1422mm,提高了5倍;而ACCC导线的驰度仅从198mm增加到312mm,提高仅0.57倍,其驰度变化量仅为常规ACSR的9.6%,在高温下弧垂不到ACSR的1/10。 4. 重量轻。复合材料的密度约为钢的1/4。单位长度总量约为常规ACSR的70~80%。 5. 耐腐蚀、使用寿命长。碳纤维复合材料与环境亲和,而且又避免了导体在通电时铝线与镀锌钢线之间的电化腐蚀问题,较好地解决铝导线长期运行的老化问题。
二、复合材料电力杆塔技术:
复合材料电力杆塔所采用的聚氨酯基树脂,与其他种类树脂体系相比较,具有方便加工、安全环保、成本低廉等显著优点。复合材料电力杆塔的主要特点是:
1、 环境影响小,且外形颜色可与环境相协调;
2、 强度重量比大、重量轻;
3、 耐化学腐蚀、耐磨、防水、阻燃耐火(持续温度低于316℃),能够防止昆虫、鸟类和其他小动物损坏;
4、 绝缘性能好,有效降低绝缘设计水平;
5、 采用模段空心结构,存储空间小,单位运输成本低;
6、 安装与运输方便。安装后不需维护,使用寿命长达80年。
采用复合材料电力杆塔可以减少每个绝缘子串中绝缘子的用量;绝缘子串可以离结构更近;可以减少相线与相线的间距;在满足屏蔽相导线免于遭雷击的设计条件下,避雷线的高度可以降低,从而使杆塔结构设计的更加紧凑。
由于复合材料电力杆塔 好的电气“绝缘”特性,在污闪、冰闪、舞动、风偏以及雷击等电力事故频繁发生的地区,有很好的应用前景,尤其在超高压、特高压输电中,使用复合电力杆塔可以显著降低对绝缘水平的要求。
中国电机工程学会
第二篇:碳纤维复合材料的发展及应用
—— 邳州高新区招商局 丁建队1.1 碳纤维材料的历史背景
碳纤维材料的发现和使用始于1860年斯旺制作碳丝灯泡,成为发明和使用碳纤维的第一人。之后爱迪生使用竹丝制作碳丝作为灯丝,达到了照明45小时的效果。20世纪90年代中期,美国、日本、英国相继开始展开对碳纤维材料的研究。1972年,日本用碳纤维材料制造鱼竿,美国使用碳纤维材料制造高尔夫球杆,碳纤维材料开始应用于日常生活。1992年,日本东丽公司研制成功高模中强碳纤维。其后,碳纤维材料趋向于高强度高弹性模量的方向发展。如今,碳纤维材料已经广泛应用于建筑、航空航天以及汽车制造行业。 1.2 碳纤维材料的特性简介
碳纤维材料是由碳元素构成的一种纤维材料,其在微观上呈类似人造石墨的乱层石墨结构。
碳纤维材料具有良好的物理化学性质。碳纤维密度小、质量轻,密度为1. 5~ 2 g /cm3,它的比重不到钢的四分之一,但抗拉强度是钢的七到九倍,其良好的比强度使得其被广泛应用于航空航天等对重量限制要求苛刻的领域。
其化学性质同样良好,具有耐腐蚀,耐疲劳,耐高温和低温,同时其具有良好的导电性,介于金属和非金属之间。除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。[1] 2 碳纤维材料的种类及其发展
按碳纤维原丝不同主要可以分为:1.PAN基碳纤维;2.黏胶基碳纤维;3.沥青基碳纤维;4.酚醛基碳纤维。 2.1 PAN基碳纤维
聚丙烯腈(PAN)基碳纤维由聚丙烯腈经纺丝、预氧、碳化几个阶段形成。PAN基碳纤维具有高强度、高刚度、重量轻、耐高温、耐腐蚀、优异的电性能等特点,并具有很强的抗压抗弯性能,一直在增强复合材料中保持着主导地位。目前,PAN基碳纤维仍是碳纤维市场中的主流。PAN基碳纤维应用的主要领域有:航空航天工业,地面交通工具,如汽车、赛车、快速列车等,造船工业、码头和海上设施,体育用品与休闲用品,电子产品,基础设施以及造纸、纺织、医疗器械、化工、冶金、石油、机械工业等领域,要求零部件在高强度、高刚度、重量轻、耐高温、耐腐蚀等环境下工作。 2.2 黏胶基碳纤维
黏胶基碳纤维是由主要成分为纤维素的粘胶纤维经过脱水、热解然后碳化而得来的。黏胶基碳纤维的三维石墨结构不发达,导热系数小;石墨层间距大,石墨微晶取向度低,因此是理想的耐烧蚀和隔热及热防护材料。同时,黏胶基碳纤维是由天然纤维素木材或棉绒转化而来,与生物的相容性极好,又可作为良好的环保和医用卫生材料。但是,由于生产黏胶基碳纤维的工艺流程较长,工艺条件苛刻,不适宜大批量生产,成本较高;另外,黏胶基碳纤维的整体性能指标比PAN基碳纤维的要差,综合性能价格比在竞争中处于劣势,因此从20世纪60年代以来其生产规模逐渐萎缩,目前产量已不足世界碳纤维产量的l%。 2.3沥青基碳纤维
沥青基碳纤维是以石油沥青或煤沥青为原料,经沥青的精制、纺丝、预氧化、碳化或石墨化而制成。沥青基碳纤维的生产原料成本低于聚丙烯腈基碳纤维,但由于沥青基碳纤维的生产工艺复杂,反而使其生产成本大大增加。此外,沥青基碳纤维抗压强度比较低,其后加工性能也不如聚丙烯腈基碳纤维,因此其生产规模和应用领域都受到了一定限制。不过,由于沥青基碳纤维具有优良的传热、导电性能和极低的热膨胀系数,因此仍在必须要求这些性能的军工及航天领域发挥着独特作用。 2.4酚醛基碳纤维
酚醛基碳纤维阻燃性、绝缘性极好;可在松弛条件下碳化,加工工艺简单,碳化时间短且温度低,碳化率高,且手感柔软,但强度和模量较低。酚醛基碳纤维主要用于复写纸原料,耐腐蚀电线,以及用来制造耐热、防化防毒、无尘等特种服装。
3 碳纤维增强型复合材料 [2]碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在强度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
CFRP 是目前最先进的复合材料之一,它以轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料。
CFRP 的力学性能主要取决于基体的力学性质、碳纤维的表面性状以及纤维与键合界面的性质,而基体的性能及纤维的表面性状直接关系到界面的键合和粘接性能。 3.1 碳纤维树脂基复合材料及其应用
碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。
(1)具有高的比强度和比模量。CFRP 的密度仅为钢材的1/5,钛合金的1/3,比铝合金和玻璃钢(GFRP)还轻,使其比强度(强度/ 密度)是高强度钢、超硬铝、钛合金的4 倍左右,玻璃钢的2 倍左右;比模量(模量/密度)是它们的3 倍以上。
(2)耐疲劳。在静态下,CFRP 循环105 次、承受90%的极限强度应力时才被破坏,而钢材只能承受极限强度的50%左右。
[3](3)热膨胀系数小。 (4)耐磨擦,抗磨损。
(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性主要取决于基体树脂。
(6)耐水性好。 (7)导电性好。 (8)射线透过性。
树脂基碳纤维复合材料由于其优异的性能,被广泛用于航空航天,汽车制造等工业部门。美国空军的F系列战斗机中大量采用了碳纤维材料以减轻机身重量。在汽车方面,宝马公司采用了碳纤维材料来制造汽车车身。在能源领域,风力发电的风机叶片既需要足够的强度,又要有较小的密度,因而树脂型碳纤维复合材料是良好的选择。 3.2 碳纤维金属基复合材料及其应用
金属基复合材料一般都在高温下成形,因此要求作为增强材料的耐热性要高。在纤维增强金属中不能选用耐热性低的玻璃纤维和有机纤维,而主要使用硼纤维、碳纤维、碳化硅纤维和氧化铝纤维。基体金属用得较多的是铝、镁、钛及某些合金。碳纤维是金属基复合材料中应用最广泛的增强材料碳纤维增强铝具有耐高温、耐热疲劳、耐紫外线和耐潮湿等性能,适合于在航空、航天领域中做飞机的结构材料。
[4]树脂基复合材料通常只能在350℃以下的不同温度范围内使用。近些年来正在迅速开发研究适用于350℃~1200℃使用的各种金属基复合材料。碳纤维增强金属基复合材料是以碳纤维为增强纤维,金属为基体的复合材料.碳纤维增强金属基复合材料与金属材料相比,具有高的比强度和比模量;与陶瓷相比,具有高的韧性和耐冲击性能.金属基体多采用铝、镁、镍、钛及它们的合金等.其中,碳纤维增强铝、镁复合材料的制备技术比较成熟.制造碳纤维增强金属基复合材料的主要技术难点是碳纤维的表面涂层,以防止在复合过程中损伤碳纤维,从而使复合材料的整体性能下降.目前,在制备碳纤维增强金属基复合材料时碳纤维的表面改性主要采用气相沉积、液钠法等,但因其过程复杂、成本高,限制了碳纤维增强金属基复合材料的推广应用。 3.3 碳纤维陶瓷基复合材料及其应用
碳纤维增强陶瓷基复合材料(CMC-Cf)在克服陶瓷材料脆性的同时,发挥了其比强度高、高温性能优异等优点,同时还具有优良的力学性能、抗磨损性能和热传导性能,成为高温结构材料的研究热点。目前,CMC-Cf的基体相主要有炭、碳化硅、微晶玻璃以及多元多层复合材料等。碳纤维作为增强相,实现了复合材料的轻量化,并赋予其优异的力学性能。但碳纤维自身的抗氧化能力差,在温度高于400℃时,一旦与氧化介质接触,纤维将被氧化,性能迅速下降,进而影响
[5]复合材料整体性能,缩短使用寿命。因此,氧化问题成为限制CMC-Cf。性能提升与应用领域拓展的瓶颈。 4 碳纤维材料的发展现状及前景 4.1 国内外发展现状 4.1.1 国内发展现状
我国对碳纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩,进入21世纪以来发展较快,安徽华皖碳纤维公司率先引进了500t/ 年原丝、200t/ 年PAN基碳纤维(只有东丽碳纤维T300水平),使我国碳纤维工业进入了产业化。随后,一些厂家相继加入碳纤维生产行列。从2000年开始我国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。目前利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水平。
2009年,国内碳纤维产业多年来发展落后缓慢的局面得以改变,生产企业和投资基地都在不断增多,本行业的发展从此进入了一个全新的时期。但是与发达国家相比,我国目前的碳纤维生产能力(特别是高端产品)与国际水平还存在相当的差距:产能只占世界高性能碳纤维总产量的0.4%左右,大量碳纤维产品仍靠进口,真正国产化还需要一个漫长的过程。
[6]中复神鹰自主研发的年产1000吨碳纤维生产线于2008年10月顺利投料生产,2009年产量达到550吨,产销量位居国内第一位,有效缓解了国内碳纤维的供应紧张局面;威海拓展纤维有限公司也于08年引进了一条年产1000吨碳纤维生产线并顺利投产。但与发达国家相比,我国碳纤维产业刚刚起步,在产量和高端产品品种上仍还远远不能满足国防和国民经济建设的需要。 4.1.2 国际发展现状
近几年随着先进复合材料的发展,碳纤维需求激增,引爆了近年来世界性的碳纤维危机,这场危机从2005年开始日趋明显,至2007年达到极点。自碳纤维危机爆发以来,各大碳纤维生产厂商急剧扩张,扩大产能,缓解了碳纤维紧缺的供应情况。2008年下半年爆发了世界金融危机,实体经济受影响颇深,碳纤维的需求也有所回落。尤其是2009年经济衰退陷入最低谷时,很多碳纤维制造商也推迟或放慢了自己的发展计划。但是进入2010年以来,随着经济危机的好转,全球碳纤维市场出现快速回暖的迹象。巨大需求刺激碳纤维市场回暖,因此对碳纤维的需求总体仍处上升趋势。目前世界碳纤维产量达到4万t/年以上,随着碳纤维应用领域的不断扩大,碳纤维的市场需求日趋增加,碳纤维及其复合材料产业呈现良好发展态势。据相关部门预测,世界碳纤维需求将以每年大约13%的速度飞速增长,碳纤维的全球需
[7]求量2018年将达到10万t。全世界主要的碳纤维生产厂商是日本东丽、东邦人造丝和三菱人造丝三家公司, 美国的HEXCEL、ZOLTEK、ALDILA 三家公司,以及德国SGL西格里集团、韩国泰光产业等少数单位。 4.2 未来发展前景
随着工业技术的迅速发展,在航空航天,车辆交通等领域,物件的强度和可靠性需要更多的提高,而重量也是一个重要的因素,因此碳纤维材料将越来越成为高强度材料领域内的主导。
然而,碳纤维材料的普及使用依然存在一些问题。首要问题是技术垄断问题,目前全世界范围内掌握碳纤维材料的制造和研发仅仅有美国和日本的少数几家公司,其他国家在碳纤维材料研究领域进展不明显。其次是碳纤维材料的适用范围有限。虽然碳纤维材料具有良好的物理化学性质,其高模量高比强度的性质优越,但是并非很多领域都需要用到这样的优良性质,仅仅是在航空航天和交通领域内应用和需求较多。最后一个问题是碳纤维的造价问题,目前碳纤维材料成本高昂,导致使用的范围缩小,难以普及,急需在生产方式上进行改进,来降低碳纤维材料的造价。另外生产碳纤维材料的高能耗和高排放对自然环境也造成了一定的影响。
[8]
第三篇:碳纤维复合材料在航空中的应用
摘要:碳纤维复合材料由于其质轻高强的特点而在航空领域大量使用,主要介绍了其在飞机上的大量应用,期待我国碳纤维工业能早日达到先进水平。 关键字:碳纤维;碳纤维复合材料;商用飞机。 1引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
正是由于碳纤维在力学上的出色性能,碳纤维复合材料(CFRP)被广泛用于航空航天领域。早在上世纪50年代就被用于火箭,而随着80年代高性能复合材料的发展,碳纤维复合材料的应用更加广泛。不仅在火箭、宇航、航空等领域发挥着重要作用,而且广泛应用于体育器械,纺织、化工机械及医学领域。 2碳纤维复合材料在商用飞机上的应用 复合材料诞生之时,就由于其质轻高强的性能而与航空航天器结下了不解之缘。上世纪40年代开始,复合材料就被用于军用飞机的修补。上世纪80年代,复合材料在商用飞机上得到逐步应用。随之而来的碳纤维革命,尤其是中模量碳纤维性能的提高﹑技术的稳定,使得碳纤维复合材料最终被用于大型商用飞机的主结构。以B787 和A350 为代表的大型商用飞机,其复合材料在飞机结构重量中的占比已经达到或超过了50%,最大的商用飞机A380 的中央翼也完全使用复合材料,这些都是复合材料在大型商用飞机上使用的里程碑。 2.1商用飞机上主要的CFRP构件[1] 目前,商用飞机上使用的复合材料大部分是碳纤维环氧复合材料,也包括一些玻璃纤维环氧复合材料,以及少量的特种基体树脂复合材料。其应用分为三个大类,即一级结构材料、二级结构材料和内装饰材料。如图所示:
2.2主要的纤维和基体类型
在选用的纤维方面,通用级 T300 碳纤维 CFRP 可用来制造飞机的二次结构部件。 例如, T300/ 5208用来制造B7
57、B767 和B777的二次结构部件。 但因T300的抗拉强度仅为 3.53 GPa, 抗拉模量为 231 GPa, 特别是断后延长仅有 1.5 %, 满足不了制造一次结构件的要求。随后开发成功的高强中模型碳纤维在上述 3 项质量指标有了大幅度提高, 再配套韧性环氧树脂所制高性能CFRP 就可用来制造大飞机的一次结构件。主要的高强中模碳纤维品牌及性能如下表所示:
由表中数据可知,这类高强中模碳纤维的性能比通用级 T300 有了大幅度提高。我国目前还不能生产这类高性能碳纤维, 处于实验室研制阶段,有望在“十一五”期间有所突破。 通用型环氧树脂固化后属于脆性材料,需增韧改性为韧性基体树脂。高强中模碳纤维与韧性基体树脂复合后所制韧性CFRP可用来制造大飞机的一次和二次结构件。其中,具有代表性的是T800H/3900-2(P2302)和 IM7/8551-7。热固性树脂 (TS) 为母相, 热塑性树脂 (TP) 为分散相, 两者均匀混合固化成型。在热固化成型过程中,TS 成为三维交联体,TP 仍保持线性特性, 赋予CFRP韧性。 这样可制得韧性CFRP。T800H/3900-2(P2302)是典型的用来制造大飞机一次和二次结构件的韧性复合材料。
2.3韧性 CFRP 在大飞机上应用需关注的技术关键[2] 随着碳纤维性能的不断提高,增韧改性基体树脂的不断深入和复合技术的日趋完善,韧性CFRP 在大飞机上的应用逐步拓宽。未来500~600座的大飞机将成为航空客运的主力机型。为此,需要解决好以下几方面的问题:
(1)设计允许应变达到0.6%,可用冲击后抗压缩强度(CAI)来评价。这就需用高强度、大伸长碳纤维与韧性基体树脂来复合。例如,T800H/3900-2 或 IMT/8551-7 的韧性预浸料,可达到上述指标。
(2)提高抗 CFRP 的抗冲击强度,需采用高强度、大伸长碳纤维。例如,T700S 断后延长高达 2.1 %。上浆剂中可含有热塑性塑料微粒,提高其韧性。
(3)提高冲击损伤后的抗压缩强度(CAI),需采用高强度、大伸长碳纤维与韧性环氧树脂复合。控制碳纤维石墨微晶尺寸,也可提高抗压缩强度。同时,研究韧性耐热的热可塑性树脂,作为新一代韧性基体树脂。
(4)提高抗层间剪切强度(ILSS),改善两相界面粘接强度,有效传递载荷。同时,采用三维编织物和 RTM 成型技术,也可有效提高 ILSS 和防止层间剥落现象。
(5)提高CFRP的耐热性,以适应超音速飞行。除提高基体树脂的耐热性外,也应关注碳纤维表面上浆剂的湿热性能。吸湿会降底 CFRP 性能。
(6)采用整体成型的先进复合技术来制造大型构件,如体翼一次成型技术。这不仅提高整体复合件的性能,而且可大幅度减少零件数目和紧固件数目,有利于降低生产成本。 3碳纤维复合材料在发动机和短舱上的应用[1] 复合材料在商用飞机上的另一个主要应用领域是在发动机和短舱,而发动机叶片,例如,GE90 的发动机叶片,则是这种应用的典范。GE90叶片使用的是8551-7/IM7预浸料,通过热压罐工艺成型获得,这种环氧中模量碳纤维预浸料具有极高的韧性和损伤容限,可以满足叶片苛刻的性能要求。
发动机复合材料叶片的另一种制作工艺是使用3D碳纤维织物,用环氧树脂灌注而成。这种技术充分利用了3D织物的特点,用其制得的复合材料具有低裂纹扩展性、高能量吸收性以及耐冲击、抗分层性能。即将用于C919客机的Leap -X1C即使用这种技术。
复合材料除了提供结构贡献以外,在发动机和短舱上的另一个贡献是降噪。在B787的发动机和短舱上使用了一种降噪蜂窝,用其作为芯材、环氧预浸料作为蒙皮的夹层结构起到了良好的降噪效果,使B787被誉为最安静的飞机,这也是B787的亮点之一。 4碳纤维复合材料在飞机上的其他应用 通用小飞机的结构简单,有的小飞机机身甚至甚至可以使用玻璃纤维预浸料为蒙皮的蜂窝夹层结构,而外翼的翼樑则可以使用单向碳纤维复合材料制造。生产工艺上,从节约成本考虑,较为普遍采用的是非热压罐工艺。 碳纤维复合材料在直升机上的应用也十分广泛,除机身、尾樑等结构件以外,还包括桨叶、传动轴、高温整流罩等对疲劳、湿热性能有更高要求的部件。特别是复合材料桨叶的使用,把桨叶的使用寿命从金属的2000小时提高到了复合材料的6000小时以上,甚至是无限寿命,并且两者的制造成本几乎相当,因此使用复合材料取代金属材料也成为必然。
碳/碳(C/C)复合材料则是制造飞机刹车装置的优异材料。例如著名的B-2战略轰炸机、空客A320均采用C/C复合材料刹车装置。这些先进的 C/C刹车装置可有效地把飞机降落过程中的动能转化为热能,不仅刹车制动的安全性高,而且可有效减轻质量。例如160 座的空客 A320,采用的C/C刹车装置可减质量140 kg。这种 C/C 刹车装置已在战机和客机上得到广泛应用。[3] CFRP 还可用来制造隐身飞机。B-2 战略轰炸机属于隐身飞机,其雷达散射截面积
(RCS) 仅有0.1 ㎡,不易被对方雷达发现,大大增加了突防能力和生存概率。B-2 轰炸机大量采用先进的特种 CFRP,所用碳纤维的截面积不是圆形,而是异型截面,如方形截面,且在表面沉积 1 层多孔碳粒或附着1 层多孔微球,实施对雷达波的散射和吸收,赋予其吸波功能。 这种结构吸波和涂层吸波相叠加,大大增强了综合吸波动功能。这也就是说,特种 CFRP 不仅是结构材料,而且也是结构吸波材料。[3] 5我国碳纤维复合材料发展现状 我国较早地意识到碳纤维的研制和生产对军事工业发展和国民经济具有重要作用,早在20 世纪60 年代末就开始研制碳纤维,经过 40 余年的发展,碳纤维从无到有,从研制到生产取得了一定的成绩。但总的来说,国内碳纤维的研制与生产水平还较低,一直没有在高标号碳纤维研究上取得突破性进展。我国碳纤维产业未实现大规模工业化生产,产品规格单一。近些年来,由于我国对碳纤维需求量的日益增加,碳纤维又成为国内新材料业研发的热点。但是,除极个别企业外,大多数引进项目的技术和设备水平属国际中下等,生产的碳纤维产品也未达到高端水平。引进后的消化、吸收与创新是碳纤维行业面临的重大课题。[4] 我国碳纤维工业与先进国家相比存在15 年左右的差距,我们还不能生产高强中模碳纤维,T300仍处于产业化阶段。实验室研制高强中模碳纤维虽然取得长足进步,但产业化仍有一段路要走。在国家大力支持和有实力民营企业的介入,缩短产业化时间已具备条件,高强中模碳纤维指日可待。[5] 参考文献
[1] 吴一波. 碳纤维复合材料在航空工业中的应用技术(上). 玻璃钢, 2003, (2): 14-21. [2] 贺福, 孙微. 碳纤维复合材料在大飞机上的应用. 高科技纤维与应用, 2007, 32(6): 5-8, 17. [3王春净, 代云霏. 碳纤维复合材料在航空领域的应用. 机电产品开发与创新, 2010, 23(2): 14-15. [4] 顾超英. 碳纤维复合材料在航空航天领域的开发与应用. 化工文摘, 2009, (1): 17-21. [5] 刘志强. 碳纤维复合材料在航空领域的应用. 黑龙江科技信息, 2013: 62.
第四篇:专利分析报告(碳纤维复合材料的应用)
题目:碳纤维复合材料国内专利情况研究报告专利情报分析报告
学
院:
专
业: 年
级: 姓
名:
2015年12月
目
录
1 检索报告 …………………………………………………3 1.1 课题背景 …………………………………………………3 1.2 检索范围 …………………………………………………4 1.3 检索系统 …………………………………………………4 1.4 检索方式 …………………………………………………5 1.5 检索策略 …………………………………………………5 1.6 检索结果及处理 …………………………………………5 2.专利总体分析 ………………………………………………5 2.1 专利文献公布量年代分析 ………………………………6 2.2 专利权人分析 ……………………………………………6 2.3 技术领域趋势分析
…………………………………7 2.4 申请人相对研发实力分析 ………………………………8 2.5专利类型分析
……………………………………………9 2.6法律状态分析 ……………………………………………10 2.7机构属性分析 ……………………………………………11
1检索报告 1.1课题背景
碳纤维,是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。 碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好等。 碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,
这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。所以,在航空航天工业中争相采用先进复合材料。有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。据报道,美国航天飞机上3只火箭推进器的关键部件以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。
随着新技术的不断发展,对材料的要求日益增加,碳纤维所具有的高强度(是钢铁的5倍)、出色的耐热性(可以耐受2000℃以上的高温)、出色的抗热冲击性、低热膨胀系数(变形量小)、热容量小(节能)、比重小(钢的1/5)、优秀的抗腐蚀与辐射性能等优势越来越能够适应时代的要求。
1.2检索范围
国内相关专利
1.3检索系统
SIPO专利检索系统
1.4检索方式
关键词
1.5检索策略 1.5.1检索词
碳纤维
carbon fibre 复合材料
composite material 1.5.2检索策略
发明名称=(碳纤维 AND 复合材料) 1.6检索结果
通过以上检索式在SIPO专利数据库共检索出相关合并同族专利后专利文献1332篇.(经过阅读,共筛选出相关文献1032篇为基础进行分析)
2.总体专利分析
2.1专利文献公布量年代分析
从上图中可以看出,碳纤维复合材料方面专利文献公开量从2006年起整体呈增长趋势。近十年的公布量分为两个阶段:第一阶段2006年-2013年7年间,专利文献数量由最开始的少于50篇增长至2013年的187篇;第二阶段2013年-2015年三年间,专利文献数量波动不大,进入了相对平稳时期,专利数量在150篇200篇之间。通过文献公开量的趋势可以看到,近年来,该领域中,专利文献公开量呈快速增长趋势。通过文献量的趋势,可以判断出该领域的技术近年来呈平稳快速发展趋势。
2.2 专利权人分析
从上表可以看出,碳纤维复合材料方面技术主要掌握于各个高校手中,申请前十有五所均为高校,专利权数量占前十总量的59.24%,其中哈工大申请数量最多、。前十另外四家为各个公司所有,值得注意的是第四名为个人肖忠渊。
2.3 技术领域趋势分析
从上表可以看出,十年来,领域B32(层状产品)以及领域H01(基本电器元件)尽管在2012年左右稍有增加,但从体来说年申请量基本没有增长。而领域C08(有机高分子化合物;其制备及原料加工;以其为基料的组合物)和领域B29(塑料的加工;一般处于塑性状态物质的加工)则在进十年间总体上呈高速状态,尽管近两年有所下滑,但也远高于另外两个领域,可以预见这两个领域将是碳纤维复合材料今后的主要发展方向。
2.4申请人相对研发实力分析
从上表可以看出,申请量排名前十的申请人在不同领域的研发水平和侧重情况有所不同,其中,最为平均的是哈尔滨工业大学和天津大学,在5~6个领域都有发明;最不平均的是肖忠渊,只在两个领域有专利,而肖忠渊则在F16(工程原件或部件)领域独占鳌头,几乎垄断该项技术;而大连理工大学在B23(机床;其他金属加工)方面具有垄断性优势。
2.5专利类型分析
从上表可以看出,在碳纤维复合材料领域发明书要远大于实用新型数
2.6法律状态分析
从上表可以看出,整体上来说,碳纤维符合材料相关专利的法律状态并不乐观,仅有约三分之一的专利有效,撤回,失效,驳回的专利占四分之一,而还有四成多的专利处于审核状态,这提醒我们后来的人要注意申请专利时一定要各方面考虑完全,尽量提高申请成功率。
2.7机构属性分析
从上表可以看出,企业和大专院校是专利申请的主力军,几乎平分了申请总量,另有少部分也属于科研单位,这从侧面也证明了碳纤维复合材料属于高科技领域,具有相当广阔的市场前景。
第五篇:碳纤维复合材料在航空航天领域的应用
林德春
潘
鼎
高
健
陈尚开
(上海市复合材料学会)
(东华大学)
(连云港鹰游纺机集团公司)
碳纤维是纤维状的碳素材料,含碳量在 90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在 2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域, 在航空航天领域的光辉业绩, 尤为世人所瞩目。
可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。
本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。
航空领域应用的新进展
T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到 5.5GPa,断裂应变高出 T300 碳纤维的 30%的高强度中模量碳纤维 T800H 纤维。
(1)军品
碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维 复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环 氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了 明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身 段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。
美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上, 军用直升机用量达到50%以上。八十年代初美国生产的单人驾驶的“星舟”轻型机,结构质量约1800kg,其中复合材料用量超过1200kg。1986年美生产的“旅行者”号轻型飞机,其90%以上的结构采用了碳纤维复合材料,创下了不着陆连续九天进行环球飞行的世界记录。Boeing公司用GF / PPS制造海军巡航导弹的壳体,Du Pont公司用GF、KF / PA、PPS,制造军机的零部件。
由于碳纤维增强复合材料不但是轻质高强的结构材料,还具有隐身的重要功能,如
CF/PEEK 或 CF/PPS具有极好的宽峰吸收性能,能有效地吸收雷达波。美国已用来制造最新 型的隐形轰炸机。 美国的P-22 超音速飞机的主要结构就是采用了中等模量的碳纤维增强的特种工程塑料。幻影III战斗机的减速降落伞盖和弹射的弹射装置也由这种材料制成。已成功地用于飞机的肋条、蒙皮及一些连接件、紧固件等雷达波的吸收件。战斧式巡航导弹壳体、B-2隐型轰炸机的机身基材,F117A隐型飞机的局部也都采用了碳纤维改性的高分子吸波材料。
英国ICI公司用GF/PA生产战斗机上的阀门,使飞机阀门在很宽的温度范围内与燃料长 期接触也能保持其性能和形状的稳定;其它国家的飞机F/A-
18、 RAH-6
6、A330 / A340、 B7
7、Y-22上面也都采用了这种材质来制造机翼、蒙皮、主承力结构、中央冀盒、地板、尾 冀、设备箱体及结构件。
大量采用碳纤维复合材料为部件的中国新型号的军机“飞豹”飞机总长约22.3米,翼展约12.7米,最大起飞重量28.4吨,最大外挂重量约6.5吨,最大M数1.70,转场航程约3600公里。该机的攻击威力已超过“美洲虎”、“旋风”、苏-24等飞机,具备了第三代战斗机的特点。
(2)民品
在民用领域,555座的世界最大飞机A380由于CFRP的大量使用,创造了飞行史上的奇迹。飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP), 3%为首次用于民用飞机的GLARE纤维-金属板(铝合金和玻璃纤维超混杂复合材料的层状结构) 。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封 框——复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为第一个每乘客每百公里耗油少于三升的远程客机。
航天领域新进展
(1) 火箭、导弹
以高性能碳(石墨)纤维复合材料为典型代表的先进复合材料作为结构、 功能或结构/功能一体化构件材料,在导弹、运载火箭和卫星飞行器上也发挥着不可替代的作用。其应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。 碳纤维复合材料的发展推动了航天整体技术的发展。碳纤维复合材料主要应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在美国侏儒、民兵、三叉戟等战略导弹上均已成熟应用,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料,如美国三叉戟-2 导弹、战斧式巡航导弹、大力神一 4 火箭、法国的阿里安一 2火箭改型、日本的 M-5火箭等发动机壳体,其中使用量最大的是美国赫克里斯公司生产的抗拉强度为 5.3GPa 的IM-7 碳纤维,性能最高的是东丽 T-800 纤维,抗拉强度 5.65Gpa、杨氏模量 300GPa。
我国各类战略和战术导弹上也大量采用碳纤维复合材料作为发动机喷管、 整流罩防热材料。我国九十年代后期开展了纤维增强复合材料材料壳体的研究,进行了 T300 CFRP 固体火箭发动机壳体的基础试验、壳体结构强度试验、点火试车等全程考核;完成了 12K T700 CFRP壳体结构强度试验,开展了 T800 碳纤维 CFRP多种壳体的预研实验。
(2)卫星、航天飞机及载人飞船
高模量碳纤维质轻, 刚性, 尺寸稳定性和导热性好, 因此很早就应用于人造卫星结构体、太阳能电池板和天线中。 现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作, 而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。
碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天 飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有 8 种:低温重复使用表面绝热材料 LRSI;高温重复使用表面绝热材料 HRSI;柔性重复使用表面绝热材料 FRSI;高级 柔性重复使用表面绝热材料 AFRI;高温耐熔纤维复合材料 FRIC—HRSI;增强碳/碳材料 RCC;金属;二氧化硅织物。其中增强碳/碳材料 RCC,最为要的,它可以使航天飞机承受 大气层所经受的最高温度 1700℃。
从 1996 年 11 月 20 日的“神州一号”升空开始到“神州六号”上天,中国在八年多的时间里六次飞天。在飞船、卫星、返回舱中大量使用的碳纤维复合材料,为这一举世瞩目的成就立下了汗马功劳。 随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天领域中, 为世界航空航天技术的发展作出更大的贡献。