范文网 论文资料 红外温度报警课程设计(精选)

红外温度报警课程设计(精选)

红外温度报警课程设计第一篇:红外温度报警课程设计课程设计--温度超限报警装置设计题目: 温度超限报警装置设计班 级 学生姓名 实习时间课程设计报告——温度超限报警系统设计一、 设计目的:1、掌握热电式传感器工作原理并。

红外温度报警课程设计

第一篇:红外温度报警课程设计

课程设计--温度超限报警装置设计

题目: 温度超限报警装置设计

班 级 学生姓名 实习时间

课程设计报告

——温度超限报警系统设计

一、 设计目的:

1、掌握热电式传感器工作原理并了解热敏电阻与温度变化的关系;

2、熟练应用直流电桥,放大器等基本电路;

3、自拟电路,充分体会热电式传感器的实际应用;

4、学习使用PROTEUS系统进行电路仿真,PROTEL软件绘制原理图。

二、 设计内容:

温度上下限报警系统的设计

三、 设计要求:

1、温度高于80摄氏度时,红灯亮,并发出鸣叫声。

2、温度低于30摄氏度时,绿灯亮。

3、在30摄氏度到80摄氏度之间,两个灯都不亮。

四、 器件选择:

使用工具:直流稳压电源(5V)一台、电烙铁一把、万用电路板一块、泰坦万用表一台、温度计一个、加热杯一个

元件选择:热敏电阻NTC 5D-11一个(负温度系数)、放大器LM324一个、C9013两个、红色发光二极管一个、绿色发光二极管一个、蜂鸣器一个、100欧电阻四个、10欧电阻两个、10K欧电阻三个、470欧电阻两个、390欧电阻两个、导线若干

五、 设计思路:

温度上下限的确定:根据热敏电阻对于不同温度有不同的电阻值的特性来得到。通过实际侧量,得到所要求温度上下限对应的电阻值(本次使用的热敏电阻为负温度系数即温度越高阻值越低)。

电路的实现:主要通过NTC传感器的作用,将温度引起的阻值变化转化为电势的变化,再经过集成运算放大器来控制输出,从而得到对温度上下限的控制。最后经过后续电路,完成亮灯和报警系统。

电路整体的组成如图所示:

六、 设计原理:

1、 热敏电阻:

热敏电阻的基本特性是电阻—温度特性。我们使用的热敏电阻为负温度系数热敏电阻,特别适用于-100~300℃之间测温,在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,即随着温度的升高阻值不断减小。由于热敏电阻是由半导体材料制成的,其中的载流子数目是随温度的升高按指数规律迅速增加的。载流子数目越多,导电能力越强,其电阻率也就越小,因此热敏电阻的电阻值岁温度的升高将按指数规律迅速减小。这和金属中自由电子的导电机制恰好相反,金属中的电阻值是随着温度的上升而缓慢增大的。热敏电阻有正温度系数,临界温度系数与负温度系数之分,本实验所用的101为负温度系数(NTC),在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,可表示为RT=e

T式中,RT为温度为T时的电阻值,与β为与半导体性能有关的常数,T为热敏电阻的热力学温度。经实际测量, 30摄氏度时热敏电阻阻值达到95欧姆,而80摄氏度时达到22欧姆。

2、 集成运算放大器

我们采用了LM324四运放集成电路。它采用14脚双列直插塑料封装,其内部包含四组形式完全相同的运算放大器,除电源共用以外,四组运放相互独立。每一组运放都可以用图一所示的符号来表示,它共有5个引出脚,其中“+”、“-”为两个信号出入端,“V+”、“V-”为正、负电源端,“V0”为输出端。两个信号输入端中,V-(-)为反相入端,表示运放输出端V0的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V0的信号与该输入端的相位相同。LM324的引脚排列见图2。

(图一)

(图二)

当去掉运放的反馈电阻,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大,此时运放变成、形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-)。当正输入端电压高于负输入端电压时,运放输出高电平。

我们选择第一组与第二组进高低温比较:当环境温度高于80℃时,5管脚电位高6管脚电位,7管脚输出高电平,C9013导通,红灯亮且蜂鸣响,否则红灯不亮蜂鸣不响;当环温度低于30℃时,3管脚电位高于2管脚电位,1管脚输出为高电平,C9013导通,绿灯亮,否则输出绿灯不亮。

3、 报警装置:

我们采用了蜂鸣器与红色发光二极管并联的方式接入电路中,当红色二极管亮时蜂鸣响,实现高温报警。

七、 制作步骤:

1、 仿真

电路基本设计出来后,在计算机上用PROTEUS系统仿真软件实现仿真。对元器件的取值应严格按照设计的电路及实际情况来确定,以减少在硬件操作时的麻烦。以下为仿真后的截图效果:

2、 电路板设计

我们先在面包板上连接好电路,控制传感器温度,使温度上下限确定位在30℃及80℃。

焊接前对万用电路板进行了电路设计,以整洁美观为原则。对布线,元件的放置都有明确位置。

3、 焊接

严格按照上图所示连接电路图,LM324的4脚接+5V,11脚接地。 焊接时应注意以下几个方面:

(1) 发光二极管的极性不能搞混,脚长的一端为正极,另一端为负极。或使用万用表测量。

(2) LM324不能直接焊接在电路板上,那样的话既不容易调试,还容易烧坏片子,应焊接8脚的集成电路管座,在焊接完成后将LM324插于管座上。

(3) 扬声器的极性已标出,注意不能反接。

(4)

焊接完成后的电路基本不用调试,用给NTC传感器加热,其电阻发生变化,使管脚

2、3与管脚

5、6的电压发生变化,从而使LM324的第一组或第二组导通或截止,进而实现红灯或绿灯亮,实现温度超限报警。

八、 心得体会:

在此次为期两周的课程设计中,我觉的自己在很多个方面都获得了较为显著的提高。

首先是对理论知识的理解。通过自身对传感器的设计、仿真、组装,将在课堂上学到的理论知识用以解决这一系列过程当中出现的种种问题。不仅使理论正确的指导了实践,更在实践的过程中深化了对理论的认知,真正将课堂上的知识变为了自己的。

其次是团队合作与交流能力。在这次的实习中采取了以小组为单位的合作形式,这就需要小组中的每个成员都要有一个明确的分工。我在小组中主要负责电路的设计与焊接,但这个过程并非只由我一人完成,小组的其他成员也给了我很大的帮助。整个设计、制作过程也可以说是一个互相交流的过程。例如,在设计的最初我采用了课本里出现过的一个电路,但在仿真的过程中却发现无法实现设计所要求的功能,之后我便和其他同伴互相交流了各自的想法,认定此电路只能实现部分要求。随后我们重新设计了新的电路并成功的进行了仿真。之后的焊接与调试同样是在小组成员默契的配合与坦诚的交流中逐步完成的。

再次是展示自我的能力。由于这次的实习添加了答辩的环节,因此也就给了我们一个展现自己的舞台。我们阐述自己的设计原理并对自己在整个过程中的工作进行总结,这对我们每一个人而言都是一种新的体验。也为我们在更大的舞台上展示自己打下了基础。

总而言之,这次的课程设计确实使我受益匪浅,为以后的学习和工作都奠定了坚实的基石。

——吴航航

回顾进行课程设计的这段时间,我们共同亲身见证了实验作品的成功诞生:在设计电路的过程中我们遇到了许多问题,但经过我们的共同努力各个击破,一开始拿到设计题目时,只知道使用热敏电阻来实现,但就其电阻与温度的变化关系并不清楚,所以只能采取实际测量的方法确定在30、80摄氏度使得阻值来实现仿真。但在实际硬件操作中出现了误差,在不到低于30摄氏度时绿灯就暗了,这就需要我们重新更换电阻,调节使其接近理想值。

通过这次课程设计我也收获了许多:首先,针对温度上下限报警系统的设计,我和小组成员一起共同经历了从一头雾水、毫无头绪到最终制作出比较精确的、达到设计要求的作品这样一个过程,并从中体会到团队的合作以及成功的喜悦。其次,我认为这次课程设计最困难的地方也是收获最大的一点就是使用PROTEUS系统进行电路的仿真以及PROTEL软件绘制原理图。之前从来没有接触过这样的软件,不懂如何使用。经过翻阅资料,同学的指导,初步的掌握了仿真软件的使用,并可以进行一些较为简单的电路仿真,同时我也意识到测控专业的学习离不开这些工具软件的辅助,接下来,我也会进一步学习,争取熟练掌握仿真软件的使用。再次,我感觉进行课程设计一方面提高了我们的动手能力,理论与实际相结合;另一方面通过答辩环节,锻炼我们的口语表达,如果不能很好的表达,设计的再出色,也很难得到他人的认可。

总之,这次课程设计是我今后学习工作的一个很好的教材。

——李园园 这一次的课程设计一共持续了两周,我觉得我在这段时间内学到了很多的东西,这一次的实验主要是针对传感器来设计一定的电路,我们的实验要求是用热敏电阻设计出有温度上下限的报警系统。

刚拿到这个课题的时候,我不知道该从何下手,上这门课的时候我们都是在学一些理论知识,对于我还不知道该怎么把理论应用于实际中。我们小组的成员经过讨论后决定先查一些相关的资料,应该先了解一下老师,给我们提供的元器件,然后才能根据元器件设计出符合要求的电路。当我们有了一定的设计思路的时候,我们利用仿真软件对我们的电路进行仿真,看我们的思路是否可行。在这个过程中我们学会了如何使用仿真软件。在焊接电路的时候,我们小心的焊接尽量不让两个焊点连接到一起。而且在布线的时候,尽量不要让两根线重叠在一起,这样才可以保证清晰和美观。由于实际和理论之间是有差别的,在仿真的时候我们曾确定过电阻的阻值,但应用到实际的时侯出现了偏差,不能在30度和80度的时候红灯或绿灯放生准确的变化,我们经过讨论最后决定用电阻串并联实现,所以我们的最后结果还是比较成功的。

从这次的课程设计中我学到了好多的东西:首先,我学会了怎么样去用仿真软件去画电路图,明白了作为一个工科生,我们不能只学习书上的知识就觉得足够了,我们要充分的利用好课余时间,把握好机会去多接触些实际模型,争取做到理论与实际相结合的学习方式。其次,我懂得了团队合作精神的重要,在这次试验中,我们每个人都付出了好多的努力,我知道,从设计电路到最后焊接的成功,一个人是不能完成的。在整个实验的过程中我们小组的成员都可以做到互相帮助,互相学习。我觉得这就是所谓的团队精神,我相信这也是实验的一个要求与目的吧。总之我在这个实验中是受益匪浅的,我相信给我以后的生活和学习带来很多帮助。

——裴佩

九、 参考文献:

《传感器与传感器技术》

科学出版社

何道清

2006年

《电子技术基础 模拟部分》 高等教育出版社

《传感器应用及其电路精选》电子工业出版社

康华光

张福学

2004年 1992年

第二篇:外围红外报警应急预案

*******分公司

外围红外报警应急预案

一、目的:

为了正确、有效和快速处理周界防越红外线报警事件,保障公司业主人身和财产安全,维护公司内公共秩序,最大限度地减少因不法分子违法行为造成的影响和损失。

二、适用范围:

适用于*******周界防越红外报警事件应急处理。

三、参加人员:

*******管理处经理及全体员工

三、时间:

2016年X月X日下午X时

四、演练地点:

*******总部大楼C座外围

五、演练内容:

C座外围红外报警

六、现场指挥人员及职责:

总指挥:项目经理 副总指挥:项目副经理

职 责:负责应急演练的统一协调指挥及演练过程中各环节实施情况的现场检查。 现场指挥:安管队队长

职责:执行上级下达的命令,协调各部门之间的配合,对演习进行总结等。

抢修组:工程组

职 责:对红外对射探头、围栏等设施进行检查、修复。

*******分公司

巡逻组:安管队

职 责:巡查红外报警现场,查看设备是否完好、是否有可疑人员和物品等。

警戒组:特勤人员

职 责:维护现场秩序安全,确保演习顺利进行。

七、现场处理:

1.监控室接到报警后,第一时间将准确的报警地址通知区域巡逻岗和班队长。同时应密切关注报警区域附近的监控镜头,发现状况立即再次通知班队长,并在《*******红外对射报警记录表》、《*******安管员值班/交接班记录表》做好记录。

2.各岗听到监控室对讲传达的信息后立即注意本岗位周围异常情况,并严密盘查本岗位出入人员,有异常情况立即向班长报告。

3.班长立即组织其他岗位对报警区域包抄排查:先包抄,后地毯式排查搜寻,找制高点进行俯视。

3.1 报警区域巡逻岗必须在3分钟内赶往报警地点并进行搜寻。搜寻内容包括:

第一,关注可疑人员:可视范围内所有人员,如果有人员必须进行确认。

第二,用强光手电照射查看报警区域的围栏是否完好。

第三,报警区域围栏两侧是否有可疑物体等。

第四,报警区域附近隐秘处是否有人员迹象。另外22:00后报警,巡逻岗5分钟后再次对该区域进行复查。

*******分公司

3.2 其他人员包抄排查关键点:一楼窗户、楼道(夜间以声控灯亮的为排查重点)、灌木丛、地下库、拐角处等。

4.发现可疑人员的处理。只要不认识(不要听此人解释),自我防范的基础上立即报警通过公安机关核实确认。如果可疑人员逃跑,在自我防范的基础上立即抓捕、制服、报警,三人以上看守。

5.出现报警后,排查完毕要再次测试报警是否正常。如红外对射持续报警且无法重新布防,监控室应第一时间将信息通知班队长及维保单位,而后由维保人员对报警防区的红外对射探头进行逐一排查,查看是否有遮挡物、线路或设备是否被损坏,直至查找到具体原因:

● 如确定为设备故障,无法及时修复,班队长必须组织人防补位,直至设备修复。

● 如确定是人为所致,班队长必须组织人员进行蹲守布控并上报经理部。

6.分析总结,结果报监控室进行记录存档。

八、后续处理:

1.如抓获嫌疑人等,及时交由公安机关处理。

2.在12小时内填写《突发事件处理记录》上报经理部。

3.认真对事件发生的原因进行分析并制定整改计划,指定专人进行跟进闭环。

九、相关材料:

报警设施受损资料、受损情况照片、受损业主资料。

十、相关工具:

对讲机、电话、强光手电、警棍、盾牌。

*******分公司

第三篇:温度传感器课程设计

温度传感器简单电路的集成设计

当选择一个温度传感器的时候,将不再限制在模拟输出或数字输出装置。与你系统需要相匹配的传感器类型现在又很大的选择空间。市场上供应的所有温度感应器都是模拟输出。热电阻,RTDs和热电偶是另一种输出装置,矽温度感应器。在多数的应用中,这些模拟输出装置在有效输出时需要一个比较器,ADC,或一个扩音器。因此,当更高技术的集成变成可能的时候,有数字接口的温度传感器变成现实。这些集成电路被以多种形式出售,从超过特定的温度时才有信号简单装置,到那些报告远的局部温度提供警告的装置。现在不只是在模拟输出和数字输出传感器之间选择,还有那些应该与你的系统需要相匹配的更广阔的感应器类型的选择, 温度传感器的类型:

图一:传感器和集成电路制造商提供的四中温度传感器

在图一中举例说明四种温度感应器类型。一个理想模拟传感器提供一个完全线性的功能输出电压(A)。在传感器(B)的数字I/O类中,温度数据通常通过一个串行总线传给微控制器。沿着相同的总线,数据由温度传感器传到微控制器,通常设定温度界限在引脚得数字输出将下降的时候。当超过温度界限的时候,报警中断微控制器。这个类型的装置也提供风扇控制。

模拟输出温度传感器:

图2 热阻和矽温度传感器这两个模拟输出温度探测器的比较。

热电阻和矽温度传感器被广泛地使用在模拟输出温度感应器上。图2清楚地显示当电压和温度之间为线性关系时,矽温度传感器比热阻体好的多。在狭窄的温度范围之内,热电阻能提供合理的线性和好的敏感特性。许多构成原始电路的热电阻已经被矽温度感应器代替。

矽温度传感器有不同的输出刻度和组合。例如,与绝对温度成比例的输出转换功能,还有其他与摄氏温度和华氏温度成比例。摄氏温度部份提供一种组合以便温度能被单端补给得传感器检测。

在最大多数的应用中,这些装置的输出被装入一个比较器或A/D转换器,把温度数据转换成一个数字格式。这些附加的装置,热电阻和矽温度传感器继续被利用是由于在许多情况下它的成本低和使用方便。 数字I/O温度传感器: 大约在五年前,一种新类型温度传感器出现了。这种装置包括一个允许与微控制器通信的数字接口。接口通常是12C或SMBus序列总线,但是其他的串行接口例如SPI是共用的。阅读微控制器的温度报告,接口也接受来自温控制器的指令。那些指令通常是温度极限,如果超过,将中断微控制器的温度传感器集成电路上的数字信号。微控制器然后能够调整风扇速度或减慢微处理器的速度,例如,保持温度在控制之下。

图3:设计的温度传感器可遥测处理器芯片上的p-n结温度

图4。温度传感器可检测它自己的温度和遥测四个p-n结温度。

图5。风扇控制器/温度传感器集成电路也可使用PWM或一个线性模式的控制方案。

在图4中画是一个类似的装置:而不是检测一个p-n结温度,它检测四个结和它的自己内部的温度。因此内部温度接近周围温度。周围温度的测量给出关于系统风扇是否正在适当地工作的指示。

在图5中显示,控制风扇是在遥测温度时集成电路的主要功能。这个部分的使用能在风扇控制的二个不同的模式之间选择。在PWM模式中,微处理控制风扇速度是通过改变送给风扇的信号周期者测量温度一种功能。它允许电力消耗远少于这个部分的线性模式控制所提供的。因为某些风扇在PWM信号控制它的频率下发出一种听得见的声音,这种线性模式可能是有利的,但是需要较高功率的消耗和附加的电路。额外的功耗是整个系统功耗的一小部分。

当温度超出指定界限的时候,这个集成电路提供中断微控制器的警告信号。这个被叫做过热温度的信号形式里,安全特征也被提供。如果温度升到一个危险级别的时候温控制器或软件锁上,警告信号就不再有用。然而,温度经由SMBus升高到一个水平,过热在没有微控制器被使用去控制电路。因此,在这个非逻辑控制器高温中,过热能被直接用去关闭这个系统电源,没有为控制器和阻力潜在的灾难性故障。

装置的这个数字I/O普遍使用在服务器,电池组和硬盘磁碟机上。为了增加服务器的可靠性温度在很多的位置中被检测:在主板(本质上是在底盘内部的周围温度),在处理器钢模之内,和在其它发热元件例如图形加速器和硬盘驱动器。出于安全原因电池组结合温度传感器和使其最优化已达到电池最大寿命。

检测依靠中心马达的速度和周围温度的硬盘驱动器的温度有两个号的理由:在驱动器中读取错误增加温度极限。而且硬盘的MTBF大大改善温度控制。通过测量系统里面温度,就能控制马达速度将可靠性和性能最佳化。驱动器也能被关闭。在高端系统中,警告能为系统管理员指出温度极限或数据可能丢失的状况。

图6。温度超过某一界限的时候,集成电路信号能报警和进行简单的ON/OFF风扇控制。

图7.热控制电路部分在绝对温标形式下,频率与被测温度成比例的产生方波的温度传感器

图8。这个温度传感器传送它的周期与被测温度成比例的方波,因为只发送温度数据需要一条单一线,就需要单一光绝缘体隔离信道。

模拟正温度感应器

“模拟正量”传感器通常匹配比较简单的测量应用软件。这些集成电路产生逻辑输出量来自被测温度,而且区别于数字输入/输出传感器。因为他们在一条单线上输出数据,与串行总线相对。

在一个模拟正量传感器的最简单例子中,当特定的温度被超过的时候,逻辑输出出错:其它,是当温度降到一个温度极限的时候。当其它传感器有确定的极限的时候,这些传感器中的一些允许使用电阻去校正温度极限。

在图6中,装置显示购买一个特定的内在温度极限。这三个电路举例说明这个类型装置的使用:提供警告,关闭仪器,或打开风扇。

当需要读实际温度时,微控制器是可以利用的,在单线上传送数据的传感器可能是有用的。用微处理器的内部计数器,来自于这个类型温度感应器的信号很容易地被转换成温度的测量。图7传感器输出频率与周围温度成比例的方波。在图8中的装置是相似的,但是方波周期是与周围温度成比例的。

图9。用一条公共线与8个温度传感器连接的微控制器,而且从同一条线上接收每个传感器传送的温度数据。

图9,在这条公共线上允许连接达到八个温度传感器。当微控制器的I/O端口同时关闭这根线上的所有传感器的时候,开始提取来自这些传感器的温度数据。微控制器很快地重新装载接收来的每个传感器的数据,在传感器关闭期间,数据被编码。在特定时间内每个传感器对闸口脉冲之后的时间编码。分配给每个感应器自己允许的时间范围,这样就避免冲突。

通过这个方法达到的准确性令人惊讶:0.8 是典型的室温,正好与被传送方波频率的电路相匹配,同样适用于方波周期的装置。

这些装置在有线电线应用中同样显著。举例来说,当一个温度传感器被微控制器隔离的时候,成本被保持在一个最小量,因为只需要一个光绝缘体。这些传感器在汽车制造HVAC应用中也是很有效,因为他们减少铜的损耗数量。 温度传感器的发展:

集成电路温度传感器提供各式各样的功能和接口。同样地这些装置继续发展,系统设计师将会看见更多特殊应用就像传感器与系统接口连接的新方式一样。最后,在相同的钢模区域内集成更多的电子元件,芯片设计师的能力将确保温度传感器很快将会包括新的功能和特殊接口。

总结

通过这些天的查找资料,我了解了很多关于温度传感器方面的知识。我的大家都知道温度的一些基本知识,温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。利用温度所创造出来的传感器即温度传感器是最早开发,应用最广的一类传感器。并且从资料中显示温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,在本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

这些天,我通过许多的资料了解到两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称它为“热电偶”。我查找的资料显示数据:不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。

热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可以用来测量运动物体、小目标还有热容量小或温度变化迅速(瞬变)对象的表面温度,也可以用于测量温度场的温度分布。资料显示,最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体所测温度才是真实温度。如果想测定物体的真实温度,就必须进行材料表面发射率的修正。而材料表面发射率不仅取绝于温度和波长,而且还与表面状态、涂膜和微观组织等有关连,因此很难精确测量。在自动化生产中我发现往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,这样才能提高有效发射系数。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即是介质温度)进行修正而得到介质的真实温度。 现在,我通过这些天的努力,了解了很多温度传感器及其相关的一些传感器的知识。他们在我们生活中的应用及其广泛,我们只有加紧的学习加紧的完成自己所学专业的知识,了解相关的最新信息,我们才能跟上科技前进的步伐。

参考文献:

【1】刘君华.智能传感器系统.西安电子科技大学出版社,1993.3 【2】张富学.传感器电子学.国防工业电子出版社,1992.6 【3】王家桢等.传感器与变送器[M].北京清华出版社1996.5 【4】张正伟.传感器原理与应用[M].中央广播电视大学出版社,1991.3 【5】樊尚春.传感器技术及应用.北京航空航天大学出版社,2004.8 【6】赵负图.现代传感器集成电路.人民邮电出版社,2000.8 【7】谢文和.传感器技术及应用.高等教育出版社,2004.7 【8】赵继文.传感器与应用电路设计[M].科技出版社,2002.6 【9】陈杰,黄鸿.传感器与检测技术.高等教育出版社,2002.3 【10】黄继昌,徐巧鱼,张海贵等.传感器工作原理及应用实例.人民邮电出版社,1998.6

第四篇:氧化铝焙烧温度控制系统课程设计

摘要:氧化铝是电解铝生产的主要原料,针对我国矿石特点,我国氧化铝的生产工艺主要采用的是拜尔法和烧结法以及混联法,在拜尔法中焙烧工序是氧化铝生产必不可少的一个过程,并且是整个氧化铝生产的最后一道工序,该生产过程的主要任务是将来自分解或平盘的带有附着水的氢氧化铝物质在焙烧炉中高温煅烧,脱除附着水和结晶水,从而生成物理化学性质符合电解要求的氧化铝。氧化铝焙烧的主要工艺参数是灼烧温度.灼烧温度的高低与稳定与否直接决定着氧化铝的出厂质量,所以稳定控制氧化铝灼烧温度是保证氧化铝生产质量 的主要途径。本文以氧化铝焙烧生产过程控制系统为背景,开展了氧化铝焙烧生产过程控制策略的研究和控制系统的设计以及器件的选型。

关键词:氧化铝焙烧;器件选型;串级控制系统;PID参数整定

一、氧化铝生产工艺

生产氧化铝的方法大致可分为四类:碱法、酸法、酸碱联合法与热法。目前工业上几乎全部是采用碱法生产。碱法有拜耳法、烧结法及拜耳烧结联合法等多种流程。

目前,我国氧化铝工业采用的生产方法有烧结法,混联法和拜耳法三种,其中烧结法占20.2%,混联法占69.4%,拜耳法占10.4%。虽然烧结法的装备水平和技术水平在今年来有所提高,但是我国的烧结技术仍处于较低水平。而由于拜耳法和烧结混合法组成的混联法,不仅由于增加了烧结系统而使整个流程复杂,投资增大,更由于烧结法系统装备水平和技术水平不高,使得氧化铝生产的能耗增大,成本增高,降低我国氧化铝产品在世界市场上的竞争力。拜耳法比较简单,能耗小,产品质量好,处理高品位铝土矿石,产品成品也低。目前全世界90%的氧化铝是用拜耳法生产的。

拜耳法的原理是基于氧化铝在苛性碱溶液中溶解度的变化以及过氧化钠浓度和温度的关系。高温和高浓度的铝酸钠溶液处于比较稳定的状态,而在温度和浓度降低时则自发分解析出氢氧化铝沉淀,拜耳法便是建立在这样性质的基础上的。

下面两项主要反映是这一方法的基础:

Al2O3xH2O2NaOH(3x)H2O2NaAl(OH)4

NaAl(OH)4Al(OH)3NaOH

前一反映是在用循环的铝酸钠碱溶液溶出铝土矿时进行的。铝土矿中所含的一水和三水氧化铝在一定条件下以铝酸钠形态进入溶液。后一反映是在另一条件下发生的析出氢氧化铝沉淀的水解反应。铝酸钠溶液在95-100度不致水解的稳定性可以用来从其中分离赤泥,然后使溶液冷却,转变为不稳定状态,以析出氢氧化铝。

拜耳法生产过程简介:原矿经选矿、原矿浆磨制、溶出与脱硅、赤泥分离与精制、晶种分解、氢氧化铝焙烧成为氧化铝产品。

1破碎后进厂的碎高矿经均化场均化后,用斗轮取料机取料入输送机进入铝矿仓,石灰石经煅烧后输送到石灰仓,然后与循环母液经调配后按比例进入棒磨机、球磨机的两段磨和旋流器组成的磨矿分级闭路循环系统。分级后的溢流经缓冲槽和泵进入原矿浆储槽,用高压泥浆泵输送矿浆进入多级预热和溶出系统,加热介质可用溶盐也可用高压新蒸气,各级矿浆自蒸发器排出的乏气分别用来预热各级预热器中的矿浆。溶出设备可用套管加热与高压釜组成溶出器组。溶出后的矿浆经多级降压自蒸发器降压后,与赤泥一次洗液一同进入矿浆稀释槽。末级自蒸发器排出的乏气,用来预热赤泥洗水,洗水由循环水和不合格的冷凝水组成。稀释矿浆进入分离沉降槽,其溢流经过叶滤和降温后送去晶种搅拌分解,分解后的氢氧化铝浆液经分离后,大部分氢氧化铝返回种分槽作为晶种使用,其余部分送去洗涤,洗水用纯净的热水,洗净后的氢氧化铝送去焙烧,焙烧后的氧化铝即为成品氧化铝。分离后的种分母液送去蒸发,加入少量盐类晶种以诱导盐类晶种析出,其溢流与滤液、补充新的液体苛性钠后组成循环母液,送去调配制备原矿浆。

二、氧化铝生产焙烧过程工艺

氢氧化铝焙烧是氧化铝生产工艺中的最后一道工序。焙烧的目的是在高温下把氧化铝的附着水和结晶水脱除,从而生成物理化学性质符合电解要求的氧化铝。 (1)焙烧原理

氢氧化铝经过焙烧炉的干燥段,焙烧段和冷却段使之烘干,脱水和晶形转变而变成氧化铝产品其化学变化可分为以下几个阶段。

(a)脱除附着水

CAl(OH)3H2O100Al(OH)3H2O 当温度高于100C时氢氧化铝中的附着水被蒸发,此反应发生在闪速干燥器。 (b)脱除结晶水

结晶水的脱除分两步进行,250-300度时,失去两个结晶水,在500-600度的温度下它失去最后一个结晶水。而成为rAlO。

23300CAl2O33H2O250Al2O32H2O 600CAl2O3H2O500Al2O3H2O  (c)晶型转变

氢氧化铝在脱水过程中伴随着晶体转变,rAl2O3在950度时开始进行晶型转变,逐渐由rAl2O3转变为a-Al2O3。

(2)氧化铝焙烧过程生产过程流程介绍

流态化焙烧是世界上最先进的氢氧化铝焙烧技术与装置,流态化是一种固体颗粒与气体接触而变成类似流体状态的操作技术。而固体物料在流态化状态下与气体或液体的热交换过程最为强烈。

2 (a)此炉型采用了在干燥段设计热发生器这一新颖措施,当供料氢氧化铝附着水含量增大时,不需象其它炉型那样采取增加过剩空气的方式来增加干燥能力,仅需启动干燥热发生器来增加干燥段热量,避免了废气量大增而大量损失热量,因此,与前二种炉型相比,气体悬焙烧炉热耗和电耗要低。

(b)整套装置设计简单。一是物料自上而下流动,可避免事故停炉时的炉内积料和计划停炉时的排料;二是设备简单,除流化冷却器外无任何流化床板,没有物料控制阀,方便了设备维检修:三是负压作业对焙烧炉的问题诊断和事故处理有利。这些都有利于故障后生产的快速恢复,给生产组织带来方便。

(c)控制回路简单,气体悬浮焙烧炉虽有多条自动控制回路,但在生产中起主要作用的仅有2条,一条是主燃烧系统的主炉温度控制回路,另一条是O2含量控制回路。

三、焙烧炉温度控制方案设计

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。一个控控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控 制器。

(1)对于焙烧过程而言,主要控制焙烧炉出口温度。而影响焙烧炉出口温度的因素主要就是燃料的流量,而流量又决定于主燃烧器的流量阀门的开度。因此,我们引入中间点信号,即最能反应焙烧炉出口温度的进入主燃烧器中的燃料流量,作为调节器的补充信号,以便快速反应影响焙烧炉出口温度变化的扰动,引入该点作为辅助被调量,通过调节管道上流量阀的开度调整燃料的流量,组成了流量.温度串级调节系统,从而调节焙烧炉的出口温度,来保氧化铝的产量和质量口”。焙烧炉温度控制回路流程图如图所示:

图1 焙烧炉温度控制回路流程图

3 焙烧炉温度控制回路设计为串级控制回路,主回路为温度控制回路,其输入为焙烧炉的出口温度的设定值,控制器输出为副回路的输入,测量仪表为一体化热电偶;副回路为流量控制回路,其输入为主控制器的输出或主燃烧器的流量设定,控制器输出为主燃烧器V19流量调节阀的百分比开度,执行机构为流量电动调节阀,测量仪表为电磁流量计。 从方框图可以看出,串级调节系统有两个闭环的调节回路:

图2 温度控制回路结构图

a)由PID控制器、调节阀、主燃烧器、流量计构成了副环回路。 b)由PID控制器、副环回路、焙烧炉、温度计构成了主环回路。

副环回路为流量调节系统,选用标准PID控制器来控制该系统。主环回路为温度调节系统,也选用标准PID控制器来控制该系统。

主调节器出的的信号不是直接调节温度,而是作为副调节器的可变给定值,与燃料流量信号比较,再通过副调节器去控制电动阀动作,以调节燃料流量,保证焙烧炉出口温度能较快的跟踪设定值并最终保持在设定值附近不变。

(2)从动态特性的角度考虑,优化控制器性能与结构,提高系统的响应速度。在对控制系统进行设计时,尽量根据被控制对象选择一组较为合适的控制器参数,提达到更好可控制效果。而通过对系统建立数学模型,根据模型特性,通过设定某种性能指标,在实现最优指标的前提下,对控制器参数进行寻优可谓是个好的优化控制器性能的办法。对于串级控制系统来说,有两个控制器,因此需要分别对两个控制器的参数进行整定,整定的顺序先调节副回路,待副回路调节达到要求后,在调节主回路。

(3)如果测量元件的延迟和惯性比较大,就不能及时反映温度的变化,就会造成系统不稳定,影响控制质量。因此,在系统的仪表选型上尽量使用快速的测量元件,安装在正确的位置,保证测量信号传递的快速性,减小延迟和惯性。

四、焙烧炉温度回路对象模型的建立与验证

建立数学模型的方法有许多种,像机理建模、系统辨识等。机理建模有较大的普遍性,但是多数工业过程的机理较为复杂,其数学模型很难建立,虽然在建模过程中作了一些具有一定实际依据的近似和假设,但是逼近不能完全反映过程的实际情况,有时甚至会带来一些估计

4不到的影响。因此,在工程目前主要采用试验建模一过程辨识和参数估计的方法。建模的方法我们采用响应曲线法,响应曲线法主要用于阶跃响应曲线和矩形脉冲响应曲线。

图3 阶跃响应法 图4 矩形脉冲响应法 (1)阶跃响应曲线的试验测定:

将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,则称为阶跃响应曲线。

阶跃响应曲线能直观,完全描述被控过程的动态特性。实验测试方法易于实现,只要是阀门的开度作一阶跃变化即可,实验时必须注意:

(a)合理选择阶跃扰动量,既不能太大,以免影响正常生产,也不能太小,以防被控过程的不真实性。通常取阶跃信号值为正常输入信号的5%一15%,以不影响生产为准。 (b)试验应在相同的测试条件下重复做几次,需获得两次以上的比较接近的相应曲线,减少干扰的影响。

(c)试验应在阶跃信号作正,反方向变化时分别测出其相应曲线,以检验被控过程的非线性程度。

(d)试验前,即在输入阶跃信号前,被控过程必需处于稳定的工作状态。在一次试验完成后,必须是被控过程稳定一段时间后再施加测试信号作第二次试验。

考虑到实际工程的方便,对主炉温度控制我们采用阶跃响应曲线试验建模法。根据 控制理论来分析,设计或改进一个过程控制系统,只有过程的阶跃响应曲线显然是不够的,还必须有阶跃响应曲线来辨识被控过程数学模型,如微分方程、传递函数、频率特性、差分方程等。在确定模型参数时,首先分析阶跃响应曲线的形状,选取一种模型结构,然后进行参数估计。由阶跃响应曲线辨识数学模型的方法很多,一阶惯性环节是一种常用的估计方法。

在过程输入阶跃信号x0的瞬时,其响应曲线的斜率最大,如图5所示。

5图5 阶跃响应曲线

此时,其数学模型可用一阶惯性环节来近似,即

w(s)sK1

式中参数K、的求法如下: (1)过程的静态放大系数

y()y(0) x0K(2)过程的时间常数

对于上式所示的过程模型,在阶跃信号x0作用下的时间特性为:

y(t)Kx0(1e)

式中,K为过程的放大系数,可由上式可确定。

图3.20描绘该方程的曲线图,表明一阶过程对输入的突然变化不能瞬时做出响应。事实上,当时间间隔等于过程时间常数是(t)过程响应应仅为完全值得63.2%。从利用上讲,除了t,过程输出总不会达到新的稳态值;当(t5)时,相应近似为最终稳态值。

t

五、设备及控制仪表的选型

(1)温度变送器的选择

选用JCJ100G温度变送器,JCJ100G温度变送器将热电热偶所测的温度变化通过电路处理,经信号放大后转化成标准的电压或电流信号。信号可以供数字仪表、记录仪、模拟调节器、DCS系统,广泛用于工业生产过程检测与控制系统。 本温度变送器采用优质电子器件,性能远高于其他同类产品,物美价廉。 (2)控制器选型

按照设计要求,本设计选用一个KSW-6-16型温度控制器为1300℃电炉的配套设备,与铂铑—铂热电偶配套使用,可对电炉内的温度进行测量、显示、控制,并可使炉膛内的温度自动保持恒温。以硅碳棒为加热元件的高温电阻炉,其加热元件的冷态与热态时的电阻值相差较大,在长期使用中硅碳棒的电阻值将逐渐变大。所以必须与调压设备配套使用,KSW-6-16型号的温度控制器具有温度控制和电压调节二种功能,该温度控制器的温度显示有数字显示

6和指针显示二种,其中尤以固态继电器为执行元件并配以数字显示的控制器性能更为优越。 结构及工作原理:温度控制器的外壳由钢板冲压折制成型并采用铝合金框架结构,外壳表面采用高强度的静电喷涂,漆膜光滑牢固。控制器的前部装有温度控制仪表、电压表、电流表和电源开关。控制器的内部装有可控硅、线路板及螺旋保险和接线端子等电器元件。该温度控制系统采用了优质电子集成元件,控温灵敏、性能可靠、使用方便。

其工作原理:热电偶将电炉内部的温度转换为毫伏电压值,经过集成放大器的放大、比较后,输出移相控制信号,有效地控制可控硅的导通角,进而控制硅碳棒的平均加热功率,使炉膛内的温度保持恒温。 (3)执行器的选择

PID系统的执行机构为电动调节阀、排料阀。电动阀使用电机作动力,气动阀使用压缩空气作动力,电动阀对液体介质和大管道径气体效果好,不受气候影响,电动调节阀要求电动调节装置和阀体间隙精密,能够准确地控制阀门开度,阀芯则根据重油黏度系数选用V型半球阀,使其过油能够连续通顺,并使调节与开度尽量满足线性关系。为了解决排料的连续性,选择了气动控制排料阀,执行机构为I/P定位器。I/P定位器是二位三通电磁阀。此装置通过阀门开关来控制气缸带动活塞运动。 (4)气开气关选择

气动调节阀气开或者气关,通常是通过执行机构的正反作用和调节阀结构的不同组装方式实现。气开气关的选择是根据工艺生产的安全角度出发来考虑的。在本设计中,沸腾焙烧炉的温度控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。根据生产过程的工艺特点和安全要求,保证人身安全原则、系统与设备安全原则,保证产品的质量原则,减少原料和动力浪费原则,基于介质特点的工艺设备安全原则,本设计选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更适合。如果气源中断,燃料阀全开,会使加热过量发生危险。 (5)调节器正负作用选择

副调节器作用方式的选择,确定副被控过程的Ko2,当调节阀开度增大,燃料量增大,炉膛温度上升,所以 Ko2 >0 。最后确定副调节器,为保证副回路是负反馈,各环节放大系数(即增益)乘积必须为正,所以副调节器 K 2>0 ,副调节器作用方式为反作用方式。 主调节器作用方式的选择,炉膛温度升高,物料出口温度也升高,主被控过程 Ko1 > 0。为保证主回路为负反馈,各环节放大系数乘积必须为正,所以副调节器的放大系数 K 1> 0,主调节器作用方式为反作用方式。

六、温度控制器PID参数整定及仿真

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起

7来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

被控对象为一阶传递函数

3.98W(s)sK111.15s1

采样时间为O.2秒,输入指令为一阶阶跃信号。

温度控制器PID参数整定方法,应用Matlab计算机语言编写了算法PID参数程序,获得优化参数。

整定后的PID控制阶跃响应在Matlab环境下进行仿真,仿真控制程序如图3.31所 示。

图6 温度PID控制的Simulink仿真程序

在仿真环境下焙烧炉设定1110℃,仿真曲线图所示。

8图7 温度PID整定的阶跃响应曲线

通过仿真曲线图7可以看出通过PID参数能够使焙烧炉温度快速稳定准确的跟踪设定值,上升时间大约为8s,调节时间约为10s,超调量小,基本达到控制要求。

七、总结

所设计的回路控制策略应用到现场,能够满足现场的控制要求,而且能够提高产品的品质,实验室整定的PID参数对现场控制器有很好的指导意义,提高了控制精度;为氧化铝焙烧生产提供保障;减轻了现场工艺人员的工作强度,同时也能更加精确、严格的按照设定好的曲线烘炉,提高炉子内衬的使用寿命,为顺利生产提供前提保障。总之,焙烧过程计算机控制系统成功的应用到实际工程中,满足实际项目的工艺要求,降低了现场人员的工作量,节约了现场能量,提高了产品质量和产量。

参考文献:

[1] 熊志利. 氧化铝生产焙烧过程计算机控制系统的设计与开发 东北大学 [2] 翟小康. 焙烧生产工艺燃烧控制系统分析 消费电子 2014,(14) [3] 姚月航. 氧化铝的焙烧技术与节能 中国科技博览 2014,(12) [4] 盛坤. PID技术在氧化铝焙烧炉上的应用 自动化仪表 2013,34(6) [5] 陶峰. 浅析PID参数如何调节 中国科技博览 2011,(38):14-17 [6] 赵紫静,吴建民. 浅议PID控制在温度控制系统中的应用[J].安徽农业科学,2008,(21):9335-9336 [7] 熊志利 氧化铝焙烧过程回路控制策略研究 企业技术开发 2010,(19) [8] 李传淮,吕文义. 氧化铝生产过程中的燃烧控制 自动化仪表 2002年 第3期

9

第五篇:计算机控制课程设计(电阻炉温度控制系统)

计算机控制课程设计

报告

设计题目: 电阻炉温度控制系统设计 年级专业: 09级测控技术与仪器 姓 名 :

武帆 学 号 : P60914001 任课教师: 谢芳

电阻炉温度控制系统设计

0.前言

随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,特别是微型计算机的出现使现代的科学研究得到了质的飞跃,利用单片机来改造落后的设备具有性价比高、提高设备的使用寿命、提高设备的自动化程度的特点。温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。

温度控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。采用单片机进行温度控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等方面具有重要的现实意义随着单片机技术的迅速兴起与蓬勃发展,其稳定、安全、高效、经济等优点十分突出,所以其应用也十分广泛。单片机已经无处不在、与我们生活息息相关,并且渗透到生活的方方面面。

1.课程设计任务

项目设计:电阻炉温度控制系统设计

以在工业领域中应用较为广泛的电阻炉为被控对象,采用MCS—52单片机实现电阻炉温度计算机控制系统的设计,介绍电阻炉温度计算机控制系统的组成,并完成系统总体控制方案和达林算法控制器的设计,给出系统硬件原理框图和软件设计流程图等。

1.1电阻炉组成及其加热方式

电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布 均匀、环保等优点,应用十分广泛。 1.2控制要求

本系统中所选用的加热炉为间接加热式电阻炉,控制要求为: (1)采用一台主机控制8个同样规格的电阻炉温度; (2)电炉额定功率为20 kW; (3)恒温正常工作温度为1000℃,控温精度为±1%; (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

二、系统总体设计

根据题目要求,电热锅炉温度控制系统由核心处理模块、温度采集模块、键盘显示模块、及控制执行模块等组成。采用比较流行的AT89S52作为电路的控制核心,使用8位的模数转换器AD0808进行数据转换,控制电路部分采用PWM通过AC-SSR实现锅炉温度的连续控制,此方案电路简单并且可以满足题目中的各项要求的精度。系统总体框图如下。

显示电路热电偶电阻炉变送器数据采集单片机越限报警

2.1核心处理模块——单片机

该部分的功能不仅包括向温度传感器写入各种控制命令、读取温度数据、数据处理,同时还要对执行单元进行控制。单片机是整个系统的控制核心及数据处理核心。

选择单片机的理由:单片机的特点是体积较小,也就是其集成特性,其内部结构是普通计算机系统的简化,增加一些外围电路,就能够组成一个完整的小系统,单片机具有很强的可扩展性。它具有和普通计算机类似的、强大的数据处理功能,通过使用一些科学的算法,可以获得很强的数据处理能力。所以单片机在工业应用中,可以极大地提高工业设备的智能化、数据处理能力和处理效率,而且单片机无需占用很大的空间。

2.2温度信号采集与传感器

本部分的主要作用是用传感器检测模拟环境中的温度信号,温度传感器上电流将随环境温度值线性变化。再把电流信号转换成电压信号,使用A/D转换器将模拟电压信号转换成单片机能够进行数据处理的数字电压信号,本设计采用的是数字温度传感器,以上过程都在温度传感器内部完成。

2.3人机交互及串口通信

人机交换的目的是为了提高系统的可用性和实用性。主要包括按键输入、输出显示。通过按键输入完成系统参数设置,而输出显示则完成数据的显示和系统提示信息的输出,串口通信的主要功能是完成单片机与上位机的通信,便于进行温度数据统计,为将来系统功能的扩展做好基础工作。 AC-SSR过零检测光耦隔离键盘控制 2. 4控制执行单元

是单片机的输出控制执行部分,根据单片机数据处理的结果,驱动继电器控制外部设备,可以达到超温报警及升温或者降温目的,使环境温度始终保持在一个范围之内。

根据温度变化慢,并且控制精度不易掌握的特点,我们设计了以AT89S52单片机为检测控制中心的电热锅炉温度自动控制系统。温度控制采用改进的PID数字控制算法,显示采用8位LED动态显示。

三、硬件电路设计

硬件电路如图所示:硬件系统主要由AT89S52单片机、温度采集、A/D转换、键盘显示电路、报警等功能电路组成。

3.1、核心部分单片机

AT89S52单片机为主控制单元。AT89S52单片机首先根据炉温的给定值和测量值计算出温度偏差,然后进行PID控制并计算出相应的控制数据由P1.0口输出。最后将P1.0口输出的控制数据送往光电耦合隔离器的输入端,利用PWM脉冲调制技术调整占空比,达到使炉温控制在某一设定温度。AT89S52单片机还负责按键处理、温度显示以及与上位机进行通信等工作。4位高亮度LED用于显示设定温度或实测温度。 3.2、温度采集转换模块

温度采集电路主要由铂铑-铂热电偶LB-3。LB-3热电偶可以在1300℃高温下长时间工作,满足常规处理工艺要求。测温时,热电阻输出mV热电势,必须经过变送器变换成0-5V的标准信号。本系统选用DWB型温度变送器,并将其直接安装在热电偶的接线盒内,构成一体化的温度变送器,不仅可以节省补偿导线,而且可以减少温度信号在传递过程中产生的失真和干扰。电阻炉炉温信号是一种变换缓慢的信号。这种信号在进行A/D转换时,对转换速度要求不高。因此为了减低成本以及方便选材,可以选用廉价的、常用的A/D芯片ADC0809,ADC0809是一种逐次逼近式8路模拟输入、8为数字输出地A/D转换器件,转换时间为100us,完全满足系统设计的要求。经过ADC0809转换所得到的实测炉温数据直接送入AT89S52单片机中进行数据处理。

此外,为了防止断偶或者炉温越限,产生热处理质量事故;同时为了提高温控系统的智能化控制性能,降低热处理操作人员的劳动强度,本系统特别设置了断偶或炉温越限自动报警电路。在热处理生产过程中,当发生断偶或炉温越限等异常现象时,主控单元AT89S52单片机自动启动报警电路进行声、光报警,以便操作人员快速处理,防止炉内工件过热,破坏金属组织结构。

3.3、AC—SSR交流功率调节电路

由输出来控制电炉,电炉可以近似建立为具有滞后性质的一阶惯性环节数学模型。其传递函数形式为:

其中时间常数T=350秒,放大系数K=50,滞后时间t=10秒。 为了避免交流接触器等机械触电因频繁通断产生电弧,烧坏触电或者干扰其他设备正常工作,本系统选用AC-SSR交流功率调节器作为PID控制系统的执行机构。AT89S52单片机P1.0口输出的温度控制信号经过光电耦合器件隔离,送至过零检测电路。过零检测电路产生脉冲控制AC-SSR调功电路。当实测温度偏低时,单片机输出的控制信号使得双向可控硅的导通角减小,导通时间变短,加热器功率降低炉温适当降低。通过控制输入到加热器平均功率的大小达到控制电阻炉炉温的目的。

控制执行部分的硬件电路如下图

3.4键盘模块电路

采用4×4矩阵键盘接单片机的P1口,然后实现对设定温度的修改,将它与实际温度进行对比,实现要求的功能。矩阵键盘如下图3所示:

3.5 A/D转换电路

如图所示:

3.6 变送电路

3.6.1、4~20mA变送器XTR101 XTR101为4~20mA线性化变送器,它可与镍络-镍硅测温传感器构成精密的T/I变换。器件中的放大器适合很宽的测温范围,在-40℃~+85℃的工作温度内,传送电流的总误差不超过1%,供电电源可以从11.6V到40V,输入失调电压<±2.5mV,输入失调电流<20nA。XTR101外形采用标准的14脚DIP封装。XTR101有如下两种应用于转换温度信号的典型电路:

3.6.2、I/V转换器RCV420 RCV420是一种精密电流/电压变换器,它能将4~20mA的环路电流变为0~5V的电压输出,并且具有可靠的性能和很低的成本。除具有精密运放和电阻网络外,还集成有10V基准电源。对环路电流由很好的变换能力。具有-25℃~+85℃和0℃~70℃的工作温度范围,输入失调电压<1mA,总的变换误差<0.1%,电源电压范围±5~±18V。RCV420的外形采用标准的16脚DIP封装。它的典型应用如下:

四、系统软件设计

系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。

4.1 主程序模块

开始初始化计时器初始化PID参数A/D采样以及变换Y判断越限报警N显示当前温度和设定温度报警开启设置PWM的占空比

主程序流程图

4.2 功能实现模块

以用来执行对可控硅及电炉的控制。功能实现模块主要由A/D转换子程序、中断处理子程序、键盘处理子程序、显示子程序等部分组成。

4.2.1T0中断子程序

该中断是单片机内部100ms定时中断,优先级设为最高,是最重要的子程序。在该中断响应中,单片机要完成调用PID算法子程序且输出PID计算结果等功能。其流程图如下:

进入中断设置定时器寄存器判断标志位是否为1NY标志位置0计算PID子模块标志位加1中断返回 T0中断子程序

4.2.2 T1中断子程序

T1定时中断用于调制PWM信号,优先级低于T 0中断,其定时初值由PID算法子程序提供的输出转化而来,T1中断响应的时间用于输出控制信号。其流程图如下:

进入中断取反标志位,表示该输出高电平或低电平输出高电平?Y设置高电平脉宽N输出口置高电平设置低电平脉宽Y输出低电平?N输出口置低电平中断返回 T1中断子程序

4.3运算控制模块

运算控制模块涉及标度转换、PID算法、以及该算法调用到的乘法子程序等。

4.3.1标度转换子程序

该子程序作用是将温度信号(00H~FFH)转换为对应的温度值,以便送显示或与设定值在相同量纲下进行比较。所用线形标度变换公式为:

式中,Ax: 实际测量的温度值;Nx:经过A/D转换的温度量; Am =90;Ao=40;Nm =FEH; No=01H;

单片机运算采用定点数运算,并且在高温区和低温区分别用程序作矫正处理。

4.4 控制算法:PID算法

积分分离控制的基本思路是:当偏差e(k)绝对值较大时。取消积分作用,以免由于积分作用使系统稳定性降低,超调量增大;当偏差e(k)绝对值小于某一设定值M时,引入积分控制,以便消除静差,提高控制精度,

PID算法的表达式为:

u(t)Kp[e(t)式中u(t):调节器的输出信号;

e (t):偏差信号;

1TIt0e(t)dtTDde(t)]dt

Kp:调节器的比例系数;

TI:调节器的积分时间; TD:调节器的微分时间。

在计算机控制中,为实现数字控制,必须对上式进行离散化处理。用数字形式的差分方程代替连续系统的微分方程。设系统的采样周期为T,在t=kT时刻进行采样,

e(t)dtTe(i)0i0tk

式中e(k):根据本次采样值所得到的偏差;

e(k-1):由上次采样所得到的偏差。 将上面的三个式子代入,则有

de(t)e(k)e(k1)dtT

Tu(k)Kp[e(k)TITe(i)i0kkDe(k)e(k1)]TKpe(k)kie(i)kdi0e(k)e(k1)T

式中,T为采样时间,项为积分项的开关系数

01e(k)e(k)

积分分离PID控制算法程序流程图如图10所示。

开始参数初始化采入r(k)及y(k)yPID控制E(k)<ß?nPD控制控制器输出参数更新返回

积分分离PID控制算法程序流程图

参考文献

[1] 张艳兵, 王忠庆,鲜浩编著,计算机控制技术.北京:国防工业出版社,2006 [2] 于海生编著,微型计算机控制技术.北京:清华大学出版社,1999 [3] 杨进才,沈显君,刘蓉编著,C++语言程序设计教程.北京:清华大学出版社,2006 [4] 夏云龙编著,最新Visual C++ 使用手册.北京:电子工业出版社,2005 [5] 黄迪明,许家珆,胡德昆编著,C语言程序设计.成都:电子科技大学出版社,2008 [6] 颜永军等,Protel99电路设计与应用,国防工业出版社,2001 [7] 楼然苗,李光飞,51系列单片机设计实例(第二版),2006 [8] 李朝青

单片机原理及接口技术. 北京航空航天大学出版社

[9]刘洪恩.利用热电偶转换器的单片机温度测控系统[J]仪表技术,2005.2: 29- 30。 [10]孙凯, 李元科.电阻炉温度控制系统[J].传感器技术,2003.2:50- 52.。

附录

主程序

ORG 0400H DISM0 DATA 78H DISM1 DATA 79H DISM2 DATA 7AH DISM3 DATA 7BH DISM4 DATA 7CH DISM5 DATA 7DH MOV SP,#50H CLR 5EH CLR 5FH CLR A MOV 2FH,A MOV 30H,A MOV 3BH,A MOV 3CH,A MOV 3DH,A MOV 3EH,A MOV 44H,A MOV DISM0,A MOV DISM1,A MOV DISM2,A MOV DISM3,A MOV DISM4,A MOV DISM5,A MOV TMOD,#56H MOV TL0,#06H MOV TH0,06H CLR PT0 SETB TR0 SETB ET0 SETB EA LOOP:ACALL DISPLY ACALL SCAN AJMP LOOP

50H送SP

A

清暂存单元

清显示缓冲区

T0为计数器方式2,T1为方式1

T0赋初值

T0为低中断优先级 T0工作 T0中断 CPU中断

;;清本次越限标志;清上次越限标志;清累加器;;;;;;;;;;;;;;设;;;令;启动;允许;开;调用显示程序;调用扫描程序;等待中断T0中断服务程序 ORG 000BH AJMP CT0 ORG 0100H CT0: PUSH ACC ;

PUSH DPL ;保护现场 PUSH DPH ;

SETB D5H ;置标志

ACALL SAMP ;调用采样子程序 ACALL FILTER ;调用数字滤波程序

CJNE A,42H,TPL ;若Ui(k)不等于Umax,则TPL WL: MOV C,5EH ;

MOV 5FH,C ; 5EH送5FH CLR 5EH ;清5EH单元 ACALL UPL ;转上限处理程序 POP DPH POP DPL POP ACC RETI ;中断返回

TPL: JNC TPL1 ;若Ui(k)大等Umax,则TPL1 CLR 5FH ;清上次越限标志

CJNE A,43H,MTPL ;若Ui(k)不等于Umin,则MTPL HAT: SETB P1.1 ;若温度不越限则令绿灯亮 ACALL PID ;调用计算PID子程序 MOV A,2FH ;PID值送A CPL A ;

INC A ; 对PID值求补,作为TL1值 NM: SETB P1.3 ;令p1.3输出高电平脉冲 MOV TL1,A ;

MOV TH1,#0FFH ; T1赋初值 SETB PT1 ;T1高优先级中断 SETB TR1 ;启动T1 SETB ET1 ;允许T1中断

ACALL TRAST ;调用标度转换程序 LOOP: ACALL DISPLY ; 显示温度 JB D5H,LOOP ;等待T1中断 POP DPH ;

POP DPL ; 恢复现场 POP ACC ;

RETI ;中断返回

MTPL: JNC HAT ;若Ui(k)大于Umin,则HAT SETB P1.0 ;否则越下限声光报警 MOV A,45H ;取PID最大值输出 CPL A ;

INC A ; 对PID值求补,作为TL1 AJMP NM ;转NM执行

TPL1: SETB 5EH ;若Ui(k)大于Umax,则5EH单元置位 JNB 5FH,WL ;若上次未越限,则转WL INC 44H ;越限计数器加1 MOV A,44H CLR C SUBB A,#N ;越限N次?

JNZ WL ;越限小于N次,则WL SETB P1.2 ;否则,越上限声光报警 CLR 5EH CLR 5FH POP DPH POP DPL POP ACC RETI

T1中断服务程序 ORG 001BH AJMP CT1 ORG 0200H CT1: CLR D5H CLR P1.3 RETI ;

; 清越限标志 ;

; 恢复现场 ;

;中断返回

p1.3变为低电平 ;中断返回 ;清标志;令

上一篇
下一篇
返回顶部