范文网 论文资料 锐角三角函数中考专题(通用)

锐角三角函数中考专题(通用)

锐角三角函数中考专题第一篇:锐角三角函数中考专题锐角三角函数教学反思教学反思本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方。

锐角三角函数中考专题

第一篇:锐角三角函数中考专题

锐角三角函数教学反思

教学反思

本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。

还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。

第二篇:锐角三角函数复习课教学反思

今天按照学校常规课堂教学要求,运用楚都中学“245”教学模式在九(3)班进行了一节锐角三角函数的复习课教学,下面,就我本节课的教学体会作如下总结:

本节课分为四个环节:第一个环节是目标导学,分为三步。首先让学生齐读教学目标(巩固锐角三角函数的概念;熟记300、450、600角的三角函数值;掌握锐角三角函数与直线型、相似、圆等数学知识的综合应用),然后口答锐角三角函数的概念以及用表格呈现的特殊角的三角函数值,最后独立完成练习(第一道题考查概念,第二道题考查特殊角的三角函数值)。其中第二题一学生演板。迅速完成了教学目标的

1、2两个内容

第二个环节是合作探究,分为两步。首先学生独立完成(8分钟),然后站立交流5分钟,学生之间互帮互学。同时三名学生演板。

第三个环节是展示点拨。对演板的三位学生的解答进行评讲,更注重点拨。归纳了锐角三角函数常用的方法以及在几何题中学生解题的基本思路。

第四个环节是检测反馈。学生独立完成后在由学生讲解解题思路和方法。 反思本节课的成功之处,我觉得有如下几个方面:

1、按照学校常规教学的要求,体现了“245”教学模式

2、板书设计美观,本节课的知识要点及学生的演板设计合理,几何图形美观

3、注重学生解题方法和知识之间联系的点拨

本节课也留下了我深深的思考:对学生知识水平估计偏高。如检测反馈的最后一道题是已讲过的题目,以为学生能够迅速准确的解答,但由于题目本身较难,只有很少的学生在短时间内解出来了。内容容量较大,自己感觉语速较快,有点赶时间。另外,没能面向全体,部分学生对特殊角的三角函数值的记忆还不够熟练。

我深信:每朵花都有花期,今日含泪的孕育只为明日吐露的灿烂芬芳!

2014-4-14

第三篇:1.1锐角三角函数(1)教学设计

一、教学内容分析

本节课是三角函数的起始课,是在学生学习了正比例函数、一次函数、反比例函数以及二次函数后已对函数有了一定的理解的基础上来学习,但是三角函数与以前学习过的函数有着较在区别,函数值随角度变化而变化,函数值是关于角度的函数与所在三角形无关很难理解,课本把它放在直角三角形中来进行定义及进行简单计算,可以降低难度,学生能更好地理解学习,本课时主要内容是三角函数的概念及进行简单的计算应用,而其中三角函数的概念应是本节课的难点。

二、 学习类型与任务分析

(一) 学习类型

1、 学习结果

(1)三角函数的概念是数学概念

(2)在直角三角形中函数值恰好等于边长之比是数学原理 (3)利用利用三角函数的定义进行简单计算是数学技能,数形结合思想是数学思想方法。

(4)利用各种方法进行因式分解,因式分解的应用是数学问题解决。 (5)通过让学生体验三角函数来源于生活;通过构造直角三角形来计算锐角三角函数值的过程是数学认识策略。

2、学习形式

锐角三角函数(1)是三角函数的起始课,属上位学习;三角函数的概念形成很抽象,宜通过实例、生活情境入手引入,让学生从实例中探究,体验概念的形成过程,宜采用探究与合作相结合的启发式教与学。

(二)学生的起点能力

1.函数概念,一些特殊简单函数及其性质的学习。 2.线段比例及相似三角形(图形)的学习。

三、 教学目标 知识技能目标:了解三角函数的概念,学会在直角三角形中进行一些简单的计算。

过程方法目标:

(1)通过体验三角函数概念的形成过程增进学生的数学经验 (2)渗透数形结合的数学思想方法。

(3)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。 情感态度目标

(1)让学生感受数学来源于生活又应用于生活,体验数学的生活化经历。

(2)通过实际问题情境的经历探究性的学习培养学生学习数学的兴趣,培养学生热爱数学、热爱生活的情感。

四、 教学重、难点

重点:锐角三角函数的概念及其简单的计算 难点:三角函数概念的形成

五、 教学流程 教师活动;

(一)实例引入,问题提出:

生活中处处有数学,数学就在我们身边,每次新知识的学习都与生活问题的解决相关,下面我们说说生活中的又一例:

生活中有很多的“陡峭”与“平坦”的问题,如我们常见的各色梯子、商场里的电动扶梯、大城市里的过街天桥等,在生活中我们经常讲这个坡太“陡”那个坡比较“平”,那么,我们又是用哪些量来衡量“陡”与“平”的呢?(幻灯片1)

上图是我们把天桥改“平”的示意图,我们这次次改造过程中有哪些量保持不变,哪些量发生了变化?它们的变化有联系吗?(幻灯片2和3)

如果进行上图的另两种改法呢? 由此看来坡改“平”之中这些改变的量之间到底有何必然联系有待我们去探索。(幻灯片4)

(二)探究合作学习,形成新知:

下面让我们来做一做,作一个30°的角,在角的边上任意取一点B,作BC⊥AC于C,计算比 的值,与同伴的结果进行比较。

再作一个50°的角进行上述操作,对结果进行比较(幻灯片5) 通过两种比较,你有什么发现?能说明理由吗?那么这种特性是否对任意锐角都存在呢?你能说明吗?

生思考,交流:

1.高度没变;坡的长度、水平距离、坡与地面的夹角在变化,前两者变大;

2. 角度变小,坡变“平”了,角度的变化一定与三种线段长度的变化有联系。

(三) 新知巩固,练习提高: 学生作图,通过相似三角形来说明

通过动手操作,探究培养学生探究能力,也能让学生体验三角函数的概念的形成过程,增加数学经验。

(四) 小结与反思

一个相关:锐角函数值只与角度数有关 二种写法:是否带“∠”符号

二种计算:直接用直角三角形计算、构造直角三角形求解 三种函数:正弦、余弦、正切

(五) 作业布置:见作业本(1)

(六) 课后反思:

第四篇:九年级数学下册 1.1 锐角三角函数教案1 (新版)北师大版

第一章 直角三角形的边角关系

1.1.1锐角三角函数

(一)

【教学内容】锐角三角函数

(一) 【教学目标】

知识与技能 理解锐角三角函数中正切函数的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算

过程与方法 经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系. 情感、态度与价值观

从实践中引导学生学会观察、思考,探索发现客观事物中存在的数学规律。 【教学重难点】

重点:探索直角三角形的边角关系.理解正切、倾斜程度、坡度的数学意义, 难点:理解正切函数的意义,领会直角三角形边角关系的实质. 【导学过程】 【情景导入】

一、学会观察,学会发现:

1、你能比较两个梯子哪个更陡吗?你有哪些办法?

2、生活问题数学化:

⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?

⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?

【新知探究】

探究

一、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt△AB1C1和Rt△AB2C2有什么关系? ⑵B1C1B2C2有什么关系? 和AC1AC2⑶如果改变B2在梯子上的位置(如图),在每个直角三角形中,∠A的对边和邻边比值会变吗? ⑷由此你得出什么结论? 根据相似三角形对应边的比相等,上述每两组线段的比值是一定的。实际上,决定比值大小的量不是它们边的长短,而是∠A度数的大小。即如果锐角A度数确定,那么∠A的对边与邻边的比也随之唯一确定,这符合函数的定义,因此我们把锐角A度数叫做自变量,它的对边与邻边的比叫做∠A的正切,记作tanA.。 即tanA=∠A的对边/∠A的邻边

根据函数的定义,当∠A变化时,tanA.也随之变化。 探究

二、例题:

1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?

归纳:当锐角的正切值较大时,坡度也较大。 探究

三、

2、在△ABC中,∠C=90°,BC=15cm,AB=25cm,求tanA和tanB的值.

…….

归纳:求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边。 【知识梳理】本节课我们学习了哪些知识?你明白了什么道理?

【随堂练习】

1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?

2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)

3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.

4、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号)

5、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.

6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB=边形AECD的周长.

7、已知:如图,斜坡AB的倾斜角a,且tanα=

5, 求菱形的边长和四12ADB3,现有一小球从坡底A处以20cm/s 4EC的速度向坡顶B处移动,则小球以多大的速度向上升高?

BAC

第五篇:最新浙教版数学九年级下教案:1.2锐角三角函数的计算(1)

1.2有关三角函数的计算(1)

一、教学目标

1.通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。

2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。

3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。

二、教材分析

在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。

三、学校及学生状况分析

九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。

学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。

四、教学设计

(一)复习提问

1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?

学生活动:根据题意,求出数值。

2.在生活中,梯子与地面的夹角总是60°吗?

不是,可以出现各种角度,60°只是一种特殊现象。 图1(二)创设情境引入课题

1如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为∠A=16°,那么缆车垂直上升的距离是多少? 哪条线段代表缆车上升的垂直距离? 线段BC。

利用哪个直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢?

用科学计算器求三角函数值,要用sin cos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin 16°sin16=sin 16°=0275 637 355

学生活动:按表中所列顺序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?

学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):

按键顺序显示结果cos 42°cos42=cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S 38D′M′S2

5D′M′S=sin 72°38′25″→ 0954 450 321

师:利用科学计算器解决本节一开始的问题。 生:BC=200sin 16°≈5212(m)。

说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。

(三)想一想

师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?

学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。

(四)随堂练习

1.一个人由山底爬到山顶,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(结果精确到0.1 m)。

2.如图2,∠DAB=56°,∠CAB=50°,AB=20 m,求图中避雷针CD的长度(结果精确到0.01 m)。 图2图3

(五)检测

如图3,物华大厦离小伟家60 m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到01 m)。

说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。

(六)小结

学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。

(七)作业

1.用计算器求下列各式的值:

(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。

图42如图4,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1 m)。

五、教学反思

1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性精神等方面得到了良好的发展。

2.教师作为学生学习的组织者、引导者、合作者和帮助者,依据教材特点创设问题情境,从学生已有的知识背景和活动经验出发,帮助学生取得了成功。

上一篇
下一篇
返回顶部