范文网 论文资料 论污水处理厂自控系统(集锦)

论污水处理厂自控系统(集锦)

论污水处理厂自控系统第一篇:论污水处理厂自控系统试论如何做好污水处理厂污水水质检测摘 要:随着社会经济的不断发展和人民生活水平的不断提高,污水的排放量越来越大,提高污水处理厂处理污水的能力就成为一个越来越突出的社会问题,而要对污水进行处理。

论污水处理厂自控系统

第一篇:论污水处理厂自控系统

试论如何做好污水处理厂污水水质检测

摘 要:随着社会经济的不断发展和人民生活水平的不断提高,污水的排放量越来越大,提高污水处理厂处理污水的能力就成为一个越来越突出的社会问题,而要对污水进行处理,首要的问题就是要做好污水处理厂污水水质的检测,该文从对污水水质检测人员进行专业技术教育以提高其自身综合素质;加大对污水处理厂污水水质仪器设备的投资力度;优化污水处理厂水质检测的项目;正确选择合适的污水水质检测仪器仪表并做好日常维护等六个方面进行论述,提出了如何做好污水处理厂污水水质检测的几个途径。

关键词:污水 水质 检测

中图分类号:X832 文献标识码:A 文章编号:1672-3791(2015)02(a)-0109-01

随着社会经济的发展和人民生活水平的提高,整个社会对水资源的需求量不断增长,水资源经过使用后成为污水排放出去,如果对污水处理方法不得当,就会使一些地方的水资源环境问题变得越来越恶劣,水资源短缺现象就会越来越严重,所以提高污水处理能力就成为一个迫切需要解决的环境问题,而提高污水处理能力,首先要对污水水质进行检测,为后期的污水处理提供科学依据,因此如何提高污水水质检测就显得尤为重要了,它越来越受到整个社会的重视。那么如何做好污水处理厂污水水质检测呢,下面研究者提出自己的几点浅见,以期抛砖引玉。

1 对污水处理厂污水水质检测人员持续进行专业技术培训和再教育,不断提高污水水质检测人员的素质。

污水处理厂污水水质检测人员必须要建立高度的责任心,认真学习国家对污水水质检测的各项规定、标准和方法,在实际工作中要熟悉各种检测仪器设备的使用、洗涤、日常维护、保存和收藏、各种实验试剂的使用和保存、常规的污水水质检测方法与注意事项、熟知污水水质检测的各种指标和含义,比如:BOD(生化需氧量)、COD(化学需氧量)、SS(悬浮物)等,并能够根据各种指标做出准确的判断和分析。

随着城市污水排放量不断增加,水资源污染也不断加剧,污水水质检测中遇到的问题也越来越多,依靠原有的知识体系和经验来处理问题越来越显得力不从心了,如何能够在短时间里高效地完成污水水质检测工作就成为摆在污水处理厂污水水质检测人员面前的一大课题,这就需要对污水处理厂污水水质检测人员持续进行专业技术培训和再教育,使他们能够与时俱进,积极认真学习国内外先进的污水水质检测技术及检测经验,不断提高污水水质检测人员的操作水平和管理水平,增强污水水质检测人员的素质,建立起一支高素质的污水水质检测人员队伍,以满足日常污水水质检测工作的各种需要。

2 加大投资力度,配备先进的污水水质检测仪器设备,提高污水水质检测仪器设备的精确度,增强污水水质检测效果。

我国是一个发展中国家,由于资金短缺,很多中小城市的污水处理厂大多都选择了价格低廉、精确度不太高的国产检测仪器,这些国产设备有的由于技术力量不强,普遍存在着检测结果精度不高,设备的可靠性和稳定性差,检测结果不连续、有误差等问题,这就大大地影响了污水水质检测结果。为了保证城市污水水质检测工作的高效性,应该适当地加大对检测仪器的设备投资力度,选购精良的检测设备,以求得更为精准的检测结果。

3 优化污水处理厂污水水质检测的项目,做到有的放矢。

由于各个污水处理厂所处的地理位置不同,有的污水处理厂位于热闹喧嚣的大城市,有的处于偏僻的小城市,由于所处地的经济、水资源环境等条件不同,各个污水处理厂所要对污水水质检测的项目也不尽相同,通常情况下,污水处理厂水质检测的项目有以下内容:水温、外观、浊度、臭味、pH、SS、DO、BOD、COD、氨氮、总磷、大肠杆菌、各种毒物、污泥沉降比等,由于各地水污染状况不同,各地污水处理厂可根据自身实际情况,对其所在地污水厂污水水质的检测项目进行适度增减,合理优化设置,以方便更好地做好当地的污水水质检测,提高污水水质检测效率,为后续的污水处理提供准确可靠的科学依据。

4 正确选择合适的污水水质检测仪器仪表并做好日常维护。

在实际工作中,污水水质检测仪器仪表的选择对检测结果的精度、可靠性都有着不可忽视的影响,为了保证污水水质检测结果的准确性,应该根据污水水质检测项目选择合适的仪器仪表并做好日常维护。

(1)要正确选择所使用的污水水质检测仪器仪表,比如测量温度要选用温度计,测pH值要用电极式pH计、测COD要用COD计等。

(2)要定期对污水水质检测仪器仪表进行清洗、维护,以确保仪器仪表在对污水水质检测中能够正常高效运行,比如有的仪器如果不够清洁,可能会影响仪器的灵敏度,有的仪器长时间没用又没有进行定期维护,可能会给检测结果带来误差等。

5 污水处理厂应该根据当地实际情况选择适当的污水水质检测方法。

一般而言,各个污水处理厂受地理位置、规模大小、当地经济状况水平、受污染程度等条件的制约,其污水水质检测方法的选择也不尽相同。规模大、经济条件好、设备仪表较先进的污水处理厂污水水质检测的项目比较多,仪器仪表也比较全面;规模小、经济条件不好、仪器设备比较落后的污水处理厂污水水质检测项目比较少,仪器仪表的种类也比较少,各个污水处理厂应该根据检测项目和所使用的污水水质检测仪器仪表选择不同的污水水质检测方法,一切要因地制宜,合理安排。

6 提高污水处理厂污水水质检测结果的准确性。

通常情况下,由于受到天气、实验室环境、仪器仪表的灵敏度、检测人员熟练程度等各个因素的限制,污水水质检测结果可能会出现不同程度的误差,这就需要检测人员对产生这些误差的原因进行认真的分析,这些情况有的是可以避免的,比如污水水质检测人员只要熟悉检测流程和国家的污水水质检测相关的标准,在实际工作中就可以减少误差,提高污水水质检测结果的准确性;而有些情况可能就无法避免,比如由于所使用的污水水质检测设备落后导致检测结果不够精确而带来的误差等,因此检测人员要对污水水质检测结果的各种数据误差进行有效的分析,尽量能够克服不利因素,选用相对较公允的数据作为分析的依据,提高污水水质检测结果的准确性。

综上所述,做好污水处理厂污水水质检测工作是减少水污染的重要因素,也是增强污水处理能力的关键,只要将提高污水水质检测效果的各个因素统筹安排,合理实施,长期有效地坚持下去,就一定能深入地做好这项工作。

参考文献:

[1] 王英杰.污水分析与检测[M].北京:化学工业出版社,2014.

[2] 王忠尧.工业用水及污水水质分析[M].北京:化学工业出版社,2010.

[3] 陈兆波,任月明.污水处理厂测量、自动控制与故障诊断[M].北京:化学工业出版社,2009.

第二篇:污水处理厂自控系统工艺介绍

污水处理厂位于市区或市郊,出水排入河流,水质达到国家一级排放标准。

工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池,。水解池出水自流入AICS进行好氧处理,出水达标提升排入河流。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:

污水处理厂自控系统设计的原则

从污水处理厂的工艺流程可以看出,主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。

为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。

自控系统的构建

污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。

1、 基本系统的选择

目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。

基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。

DCS系统适用于模拟量多,闭环控制多的系统。而现场总线系统的主要优势是适用用于控制点相当较少而且特别分散的系统。从施工和维护的角度来看,传统的DCS系统布线的工作量要远远大于现场总线系统。此外,现场总线系统与DCS系统相比,还有最为重要的一点是开发性好,扩展方便。

本工程的控制点在700点左右,模拟量只占20%左右,属于规模比较小的类型,而且这些控制点是以工艺处理单元为界线分散在厂区各处,因此本工程采用现场总线作为基本控制系统。

2、通讯网络选择

现场总线系统最主要的特点就是依赖网络通讯,分散控制和信号采集,最大程度的减少布线,节省安装和维护费用。现场总线主要是指从现场控制器或IO模块到监控系统的通讯网络。目前现场总线,根据通讯协议的不同可以分为很多种,比如,ProfiBus、CAN、ControlNet、DeviceNet FF Lon总线等。目前现场总线技术还没有统一的标准,各自的功能特点基本一致,因此本工程设计时选用在中小型控制系统应用非常广泛的ProfiBus总线。其在性价比较高,且在国内推广的时间长,稳定性较高。

ProfiBus总线有三种形式DP、PA和FMS。PA总线是与智能仪表结合在一起安全性非常高的一种ProfiBus总线形式,造价比较高,常用于石油化工冶金等行业;FMS总线适用于大范围和复杂的通讯系统,旨在解决通用性通讯任务,传速速度中等;DP总线是用于传感器和执行器级的高速数据传速网络,不需要智能仪表配合,安全性略低于PA总线。本工程是污水处理工程,对通讯安全性的要求并不太高,通信的任务比较简单,对系统的传输速度有一定要求。因此本工程的采用ProfiBUS-DP网络,即用西门子S7系列PLC搭建整个系统。总线采用普通双绞作为传输介质,通讯速率可以达到12MBP。

3、现场站设备配置的选择

对于ProfiBus-DP网络来说只是提供了一个从现场到监控层的信息通道,但信号的采集和执行命令的下达仍然需要由控制器和现场的IO模块组成的站来完成。ProfiBus-DP网络是一种主从站的网络结构。整个网络上最多可以有128个从站,但只有一个作为主站,所有的通讯事务都由主站来管理。主站必须要有控制器(CPU),同时也可以安装IO采集模块。从站有两种方式:CPU+IO模块和通讯模块+IO模块。第一种方式每个从站都由CPU,每个站的控制事务都由本站完成,与主站之间的通讯量比较少。第二种方式是所有的从站都没有CPU,所有的控制事务都由主站CPU来完成,通过总线网络把命令结果传输到从站完成,从站只是远程IO。

前述这两种从站组成方式各有自己的特点。第一种方式,控制比较分散,通讯事务较小,对网络的依赖不强,但每个站都有CPU,造价高。第二种方式,控制集中,控制事务对网络依赖性强,需要可靠的网络来支撑,同时对主站CPU的性能要求高,在软件编程和调试方面具有很大的优势。这两种方式对工程的现场安装布线施工影响比较少。

本工程控制点的规模施工调试工期比较短,选用了性价比比较高的第二种方式作为从站的组成方式即由西门子IM153通讯模块和S7 300系列IO模块组成,主站CPU选用S7 315-2DP系列。

4、人机界面设备的选择

人机界面设备是直接与操作管理人员进行交流的监控视备,一般由两部分组成,即现场监视设备和中控室监视设备。现场监视设备可以是PC机或是触摸屏,中控室监视设备一般由工控机、模拟屏或投影仪等组成。监视设备应在兼顾投资的情况下,保证操作管理人员可以对整个污水处理厂全面直观的监视与控制。

现场监视设备一般在比较重要的单元或控制事务比较大的从站中设置,以便操作人员及时对现场情况进行处理。本工程的从站的规模比较少,厂区大小从操作距离来看并不大,同时现场操作间内均设有有线电话,因此可在不设不设现场监视系统的情况下保证现场与中控室的联络畅通。

中控室监视设备是全厂的指挥和信息处理中心,其作用不言而喻。中控室监视设备比较传统的做法是模拟屏加工控机的方式,这种方式造价比较高且复杂。随着多屏卡功能的不断完善,现场又出现了工控机多屏显示加投影仪的模式。多屏卡的安装使得一台工控机可以同时拖动多台显示器,并显示不同画面,不同的工段可以同时显示,保证了操作人员监视的全面性。投影仪可以把所需要的任何画面进行放大显示,也可以供人参观。第二种方式的造价要远低于传统做法。

5、其它

成套设备的耦合

本工程中鼓风机为高速离心风机,脱水机为2000mm带宽脱水机,均为大型设备。这些大型设备是由许多辅助电动部分与主机共同工作完成鼓风机和脱水机的正常工作。本工程设计要求大型设备都单独配有自己小型的控制器,由供应商根据自己的经验编制相关程序并预留ProfiBus-DP接口,最终成为整个自控系统的一个从站。这样就其它大型设备自控系统与整个自控系统无缝连接,减少了不同供应商之间任务的交叉重叠。

监控软件的选择

监控软件是人机交流的桥梁和翻译,是保证整个自动控制系统易操作、易维护最重要的部分。应选用成熟、先进并应用广泛的知名监控软件,本项目选用亚控kingview组态软件。

自控控制系统与管理层的衔接

自控系统操作与污水处理厂管理层的衔接主要是把自动控制系统收集到的全厂信息可以顺利传输到管理层计算机,管理人员可以在线查看污水处理厂的运行状况并调用相关的运行数据。随着监控软件的供应商对INTERNET技术的不断应用开发,监控软件都可以通过局域网或INTERNET广域网进行信息发布,管理层或授权用户在任何可以上INTERNET网的地方便可浏览运行状况。而所使用MS IE浏览器的安全性问题已经得到解决。

冗余问题

由于本工程为污水处理厂工程,其安全性和可靠性要求并不严格,本设计没有对通讯网络和控制器进行冗余配置,只对上位工控机采用了双机热备配置。笔者认为在资金允许的情况下,应对主控制器进行冗余配置。

自控系统的站点划分

根据污水处理工艺的工作原理以空间分别特点,在布线最小、功能完整的情况下对全厂的站点进行了划分,子站为泵房站、水解池站、1号改进SBR站、2号改进SBR站、脱水机房站和鼓风机房站。泵房子站负责提升泵房、粗格栅、细格栅和沉砂池的数据处理,脱水机房站除负责脱水机房外,集泥池、浓缩池也归在该站内,其余子站负责各自的工艺单元。主站为变电所站,设在变电所内。

自控特点:

1、低投资:投资少

本工程除一些精度要求高的在线监测仪表(污泥浓度计、溶解氧仪和液位计)为进口仪表外,其余部分在线仪表实现国产化,节省了一部分投资费用。

另外,从工艺控制角度看,省去了一些不影响工艺运行要求的在线仪表,如ORP计、气体流量计等。不设现场监视设备的也是降低投资的重要原因之一。

在自控系统的总线技术选取上、现场I/O控制设备和上位监控设备的选取上,均采用了性价比较高的产品。如PLC采用西门子S7-300系列等。

本自控系统从以上几点节约了大量的费用。

2、低费用:运行费用低

在占全厂能耗90%的原水提升和鼓风曝气这两个环节上,依托自动控制系统,进水段实现恒液位、变流量控制,由大功率变频装置拖动大流量潜污泵,完全涵盖了500-3000m3/h的流量范围,克服了多台泵切换启停,流量突变对后续工艺的水力冲击,也达到节能的目的,立式潜污泵的提水电耗为4.75kwh/km3。

占全厂能耗75%以上的鼓风机选用单级高速离心风机,通过控制进口导叶开度调节风量,从而降低能耗,具体的作法是在夜间小水量和过渡工序时自动减小供气量。

鼓风曝气控制画面:

鼓风曝气控制画面:

本自控工程在上位软件二次开发过程从人性化角度出发,提高自控系统的可操作性,使管理者在任意时间和地点可对工艺系统进行全方面的监控,及时了解到处理系统运行的优劣状态。

投资

本工程自控系统的预算费用约占污水处理厂总投资的5%左右。与其它污水处理厂相比,本工程的自控系统投资是中等偏下,性价比较高。

结束语

污水处理厂自控系统是根据工艺要求在确定的设计原则下进行设计,既保证污水处理系统的正常运行,又尽可能的降低了工程的造价投资。

污水处理厂自控系统是整个污水处理工程的重要组成部分,其设计好坏与控制设备选择是否适当,不仅关系着自控系统的性价比的高低而且对以后整个污水处理厂运行维护的难易有着重要影响。

第三篇:关于污水处理厂自控系统设计方案

【摘要】本文首先介绍了系统简述,然后分析了系统设置,最后介绍了设备选型。

【关键词】污水处理厂,自控,自控系统,设计

一、前言

随着城市建设的发展及城市容量的扩大,城市生活污水和工业废水排放量逐年增多,污水处理厂成为了重要的解决污水的地方。

二、系统简述

全厂的整个处理系统包括格栅池、提升泵池、水解酸化池、沉砂池、一体化曝气池、人工湿地配水系统和消毒池等结构。各个设备厂家仅配套各自电气控制柜进行控制,采用的是纯电气控制方式且各个工艺段是完全分裂的,工艺参数只能采用人工记录的方式,有些需要取样实验才能得到数据。操作人员的劳动强度大,也不便于对水质参数进行分析。建自动化控制系统就是集中监视整个污水厂的各个工艺环节,实现对生产过程的自动控制、报警、自动操作以及在线实时反映各工艺流程中设备运行状况与需要参数,提高企业管理水平。

三、系统设置

1、系统组成

全厂自动化控制系统遵循“分散控制、集中监控、危险分散、数据共享”,由水质在线自动化检测和控制系统,以及过程数据处理系统三大部分组成。

2、系统要求

控制系统采用全开放式,支持不同计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操作系统;网络介质要求使用可直埋的光缆,在出现故障时,可在线增加或删除任意一个节点,都不会影响到其他设备的运行和通讯。

3、系统功能

(一)、数据采集与控制功能

(1)各种仪表的模拟量采集,各种设备开关信号采集,在线仪表数据收集。

(2)值班人员在中控室通过计算机的键盘或鼠标,根据工艺条件和控制要求,按规定时间周期设定的逻辑顺序等自动地启动或停止某些设备,或进行交替运行,或设定控制调节参数。

(二)、自动检测功能

设计时是采用PLC来实现整个系统各个工艺设施的监控。该系统可以自动、连续地检测并记录和显示出污水处理过程的水质参数(SS、DO、COD、PH等),过程参数(温度、压力、水位、流量等),电气参数等数据,以及设备的运行状况(自动、手动、运行、停止、故障、本次运行时间、累计运行时间、阀门开关及开度等)。实行每天24h不间断地循环检测采集到的数据,进行处理、归类并以原始数据文件形式存入服务器。

(三)、故障报警及处理功能

控制系统有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在监控软件中及时、准确地反映出故障状态、故障时间、故障地点、及相关信息。

(四)、数据输出功能

根据监控采集到的数据,生成全厂的生产工艺流程实时动态图,给操作人员提供清晰、友善的人机界面,反映生产工艺流程的实时数据,完成报警、历史数据、历史趋势曲线的显示和查询。同时可以生成各类生产运行管理报表、日报表、月报表和年报表。

4、上位机系统

在综合楼二楼中央控制室内设2台监控计算机,一台作为工程师站(做编程、操作、记录用),另外一台作为操作员站(仅作操作、记录用),两站均作数据备份。为保证监控计算机能稳定运行,并在掉电后能保存工艺参数数据,减少掉电对电脑的危害,设立一套UPS系统,容量为5KVA,掉电后能至少保持30分钟工作时间。另外设一套数据服务器及两台打印机。室内还设置大型DLP无缝拼接大屏幕显示系统(显示面积2×2×70寸),用以直观显示全厂工艺流程、设备工况及主要参数值。大屏幕显示系统通过与摄像监控管理计算机相连,实时监视全厂生产区域工况、主要生产设施的运行状态。监控计算机主要实现以下功能。

人机界面:在显示器上动态显示全厂各工艺设备的实时运行工况,过程控制的运行趋势,各处理环节的生产数据指标,使生产管理人员一目了然当前全厂生产运行情况。

故障登记表:监控管理计算机的显示器,无论显示何种画面及操作人员在执行何种操作,均在画面的下栏处显示故障登记表,并实时弹出新生故障警示框,使得操作人员随时随地都能了解污水厂的故障实况,计算机会自动把现场发生的故障登记入“故障登记表”中的记录。故障分一般故障和紧急故障,如水泵过载报警等属于一般故障,液位达到高位而未有水泵启动、进水水质参数超过进水标准等属于紧急故障。故障时,显示器上警示框红闪,并伴有5秒时长间隔报警声。要求操作人员在3分钟内作出响应,3分钟后均改为1秒时长间隔报警声,报警在操作人员响应后解除。

系统控制:系统的控制方式,一般分“自动”、“手动”,“自动”还分为“自控”和“中控”。“手动”、“自动”由操作人员在现场控制箱上选择,“手动”由操作人员在现场控制箱上启动和停止设备。“自控”由现场PLC站根据事先设定的逻辑程序依据工艺参数状况决定设备的启停。“中控”由中控室内操作人员在上位机上实现对设备的启停。在上位机单体构筑物界面图上,设置设备“启动”和“停止”按钮,并设置“自控”、“中控”选择按钮,并在设备图案旁显示设备控制方式状态。

工艺参数设定:功能参数设定有两大类,第一类是连续回路控制中的控制值设定,如进水泵池液位值、生物池溶氧值、药剂投加量等;第二类是报警极限设定,如泵池的高、低液位报警、主要设备的高电流报警等。可以利用计算机的先进功能,优化出污水处理的工艺参数,提供给厂长指挥调度生产。

生成各类报表:如设备编号登记、故障次数记录、设备运行累计时间记录、大修周期的倒计时,开启次数记录等。对污水厂进、出水流量、大功率电机的用电量、总用电量等主要参数进行累计。同时可生成班报表、日报表、月报表、年报表等,自动记录生产设备及工艺控制过程中出现的故障现象和发生的时间、排除的时间,并能自动打印报表。

生成历史曲线:历史趋势曲线包括全部模拟量曲线(工艺参数、电力参数、及大功率电机的电流等),趋势曲线不少于20条。对于液位参数显示和报警用棒图方式,以便精确查阅某个时间内的趋势。趋势曲线可单条显示,也可组合显示,并用不同颜色表示。

第四篇:污水处理厂自控仪表部分标书

污水处理厂工程自控仪表部分标书

自控仪表部分

1概述

处理厂工程拟采用二级分布式(集散型)计算机控制管理系统方案。采用这种结构可使生产过程中的信息能够集中管理,以实现整体操作、管理;同时,也可使生产过程中的控制危险分散,提高系统的可靠性。整个系统分成二个管理级,即由中央控制室操作站OPS和上层管理计算机组成的上位管理级,和由现场各分控制室及现场在线测量仪表组成的现场管理级。现场各种数据通过PLC采集,并通过现场高速数据总线(工业以太网)传送到中心控制室操作站OPS集中监视和管理。同样,中央控制室主机的控制命令也可通过上述高速总线传送到现场PLC的测控终端,实施各单元的分散控制。另外中央控制室的数据服务器和上层管理计算机、化验室计算机构成一个局域网,将完成全厂的数据库管理工作和模拟屏、投影仪的驱动工作。

2控制系统组成

控制系统分为三个组成部分,由数据服务器和上层管理计算机、化验室计算机构成一个上层局域网进行数据管理,由通讯系统和监控计算机组成中央控制系统(中央控制室操作站)对全厂实施集中监控,由可编程序控制器PLC及现场仪表组成现场检测控制系统(分控站)对污水处理厂各个过程进行分散控制。各分控站与中央控制室之间由高速总线(工业以太网)连接进行数据通讯。

自动化设备清单如下:

序号 名称 单位 数量 规格 备注

1 监控计算机 套 2 P4-2.5G/512M/80G/60X 工控机(带光盘可录机)

2 显示器 套 2 21” 直角平面彩色 1280×1024

3 管理计算机 套 5 P4-2.5G/256M/60G/60X 包括17” 彩色全平显示器

4 打印机 台 3 A

3、A4 激光彩色、针打黑白各一台

5 不间断电源 台 3 60min 供电 1KV、2KVA

6 PLC1 套 1 CPU-486芯片I/O数量详见文字说明的I/O清单 包括柜体及柜内配件

7 PLC2 套 1 CPU-486芯片I/O数量详见文字说明的I/O清单 包括柜体及柜内配件

8 马赛克模拟屏 套 1 有效面积6400×1800 包括PLC驱动及柜内配件

9 便携式计算机 套 1 P4-2.0G/256M/10G 14”彩色显示屏

10 软件包 套 3 包括操作系统、监控系统、组态软件、管理软件等

11 可编程终端PT(触摸屏) 套 2 TFT彩色 10英寸以上,分辨率640×480

12 过电压及防雷保护装置 套 3 两级防雷,4~20mA防雷器, 退耦分压器,网络浪涌保护,等电位连接器,附件等

13 数据传输光缆 米 1500 四芯,可直埋型

14 光纤交换机 套 3

15 服务器 套 1 P4或更高,512MB RAM, 80GB HDD,40XCD-ROM, 3.5”/1.44MB, 17”CRT , 图形卡(8MB), 工业以太网卡

2.1中心控制室

在厂内设综合楼一座,综合楼内包括中心控制室、放映室、资料室、化验室和洗手间等辅助房间。在中心控制室中设置二套监控管理计算机操作站,(包括21”彩色显示器、功能操作键盘、鼠标器、打印机及必须的软件、接口等),一套上层管理计算机,一套数据服务器,一套不间断电源,通讯装置及一块大型马赛克模拟屏(6400×1800mm2)。两套监控管理计算机可以分别侧重监控或管理功能,故障时互为备用,具有灵活的运行方式。

在中控室设置的两台主控计算机,即使当其中一台出现故障,另一台也能够完全独立地运行。据此可保证控制和数据采集的高可靠性。另外必需保证系统中的每台计算机能随时独立完成图象管理控制、数据保存、系统再生、数据处理等的不同任务。两台主控机应获得总线上所有的过程数据并允许所有相连上层管理计算机有权使用数据,并检查和储存数据,且能执行所有管理功能。

在控制过程中只有两台主控计算机有权对现场分控站PLC发出控制指令,上层管理计算机只能完成数据管理功能。计算机附加的接口应符合中国标准以便将来的使用。

此外,为了在厂长办公室内的管理计算机可通过局域网及时了解全厂的生产管理数据和水质情况。中控室设置的一套数据服务器将与厂长室、工程师室、生产部门、化验室构成局域EtherNet网,局域网采用(TCP/IP)协议,系统具备开放型要求。

本系统所配置的硬件和软件可实现如下功能:

1.采集全厂各工段的工艺参数值,电气参数值及生产设备的运行状态信息。

2.根据采集到的信息,建立各类信息数据库并对各类工艺参数值作出趋势曲线(历史数据),供调度员分析比较,以便找出污水处理厂的最佳运行规律,分析事故原因,改进管理方法,保证出水水质,提高经济效益。

3.操作站以“人--机”对话方式指导操作,自动状态下,可用键盘或鼠标器对有关设备进行手动操作(如开/停机操作)。

4.操作站彩色显示屏幕(CRT)可显示全厂平面及几十幅工艺流程中的剖面图,剖面图上有动态的实时参数值显示,机泵运行状态显示和事故报警显示等信息。

5.自控系统生成的生产报表(班/日/月)内容包括运行参数、水质分析、工艺分析、技术经济分析等。其资料来源为:设备运行记录;在线仪表实测数据;化验数据等。供生产管理之用,机内存储六个月的信息量。

6. 操作站彩色显示屏幕(CRT)的报警显示

过程检测或运转设备出现越限或故障时,流程图上相应的图例红光闪动,并发出报警声响加以提示。报警的笛声可以通过键盘或触摸屏解除,闪动的红光继续保持,直至该故障消除,闪动才停止。报警对象、内容、时间应列表记录及打印。 计算机系统可在线诊断各类故障,查找故障部位并报警。

7. 操作站彩色显示屏幕(CRT)的测量值显示

仪表测量值以棒状图形式动态显示,应有上下设定值,设定值应是可修改的。

8.设不间断电源,保证在发生停电故障时该系统仍能安全可靠地运行。

9.为了直观显示全厂工艺过程全貌,方便管理和培训,在中心控制室设立大型模拟屏,显示全厂工艺流程图和主要参数及设备运行状态,大型马赛克模拟屏(MIMIC)的显示过程由管理计算机通过总线方式驱动显示。

2.2现场分控站

根据全厂工艺流程和总平面布置,为了节省电缆,以就近采集和单元控制为划分区域的原则,全厂拟设两座分控站。每座分控站内分别配置以下主要控制设备:

1.一套可编程序逻辑控制器(PLC)

2.一套可编程终端PT(触摸屏)

3.一套隔离装置

4.一套不间断电源(UPS)及过电压保护装置

5.为现场分控制站配置两套便携式计算机

--现场的可编程序逻辑控制器分别对所辖工段内的工艺过程进行控制,采集工艺参数、电气参数、电气设备运行状态。各现场分控站控制范围及输出输入信号如下:

2.2.1 PLC1(总变配电室内)分控站

控制范围::粗格栅、进水泵房、细格栅、曝气沉砂池、SBR生物池、鼓风机房、

输入输出信号数量为:

粗格栅

粗格栅2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

栅渣输送机1台 运行/停止信号 DI 1×1 路

手/自动信号 DI 1×1 路

故障信号 DI 1×1 路

启/停指令 DO 1×1 路

栅渣压实机1台 运行/停止信号 DI 1×1 路

手/自动信号 DI 1×1 路

故障信号 DI 1×1 路

启/停指令 DO 1×1 路

6台电动闸板 手/自动信号 DI 1×6 路

全开状态 DI 1×6 路

全闭状态 DI 1×6 路

故障信号 DI 1×6 路

超声波液位差计2台 测量信号 AI 1×2 路

故障信号 DI 1×2 路

进水泵房

进水泵3台 运行/停止信号 DI 1×3 路

手/自动信号 DI 1×3 路

电气故障信号 DI 1×3 路

湿温报警信号 DI 1×3 路

泄漏报警信号 DI 1×3 路

启/停指令 DO 1×3 路

电动蝶阀3台 手/自动信号 DI 1×3 路

全开状态 DI 1×3 路

全闭状态 DI 1×3 路

故障信号 DI 1×3 路

开阀指令 DO 1×3 路

关阀指令 DO 1×3 路

超声波液位计1台 测量信号 AI 1×1 路

故障信号 DI 1×1 路

液位开关1台 低位报警信号 DI 1×1 路

电磁流量计1台 测量信号 AI 1×1 路

故障信号 DI 1×1 路

细格栅

电动闸板4台 手/自动信号 DI 1×4 路

全开状态 DI 1×4 路

全闭状态 DI 1×4 路

故障信号 DI 1×4 路

细格栅2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

螺旋压实一体机1台 运行/停止信号 DI 1×1 路

手/自动信号 DI 1×1 路

故障信号 DI 1×1 路

启/停指令 DO 1×1 路

启/停指令 DO 1×1 路

PH/T测量仪1台 测量信号 AI

1故障信号 DI 1×1 路

浊度测量仪1台 测量信号 AI 1

故障信号 DI 1×1 路

全自动取样器1台 瓶空信号 DI 1

瓶满信号 DI 1×1 路

故障信号 DI 1×1 路

曝气沉砂池

刮砂桥2台 运行/停止信号 DI 1

手/自动信号 DI 1×1 路

故障信号 DI 1×1 路

启/停指令 DO 1×1 路

吸砂泵2台 运行/停止信号 DI 1

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

×2 路 ×1 路 ×1 路 ×1 路 ×2 路

鼓风机2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

电动蝶阀2台 手/自动信号 DI 1×2 路

全开状态 DI 1×2 路

全闭状态 DI 1×2 路

故障信号 DI 1×2 路

砂水分离器1台 运行/停止信号 DI 1×1 路

手/自动信号 DI 1×1 路

故障信号 DI 1×1 路

启/停指令 DO 1×1 路

SBR生物池

电动阀门8台 手/自动信号 DI 1×8 路

全开状态 DI 1×8 路

全闭状态 DI 1×8 路

故障信号 DI 1×8 路

开阀指令 DO 1×8 路

关阀指令 DO 1×8 路

滗水器8台 手/自动信号 DI 1×8 路

运行/停止信号 DI 1×8 路

开度位置反馈 AI 1×8 路

故障信号 DI 1×8 路

启/停指令 DO 1×8 路

开度位置控制 AO 1×8 路

鼓风机8台 变频位置反馈 AI 1×8 路

手/自动信号 DI 1×8 路

运行/停止信号 DI 1×8 路

故障信号 DI 1×8 路

启/停指令 DO 1×8 路

变频控制 AO 1×8 路

电动空气蝶阀8台 手/自动信号 DI 1×8 路

全开状态 DI 1×8 路

全闭状态 DI 1×8 路

故障信号 DI 1×8 路

开阀指令 DO 1×8 路

关阀指令 DO 1×8 路

溶解氧测量仪8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

超声波液位计8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

ORP测量仪8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

MLSS测量仪8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

污泥界面计8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

回流污泥泵8台 运行/停止信号 DI 1×8 路

手/自动信号 DI 1×8 路

故障信号 DI 1×8 路

启/停指令 DO 1×8 路

剩余污泥泵8台 运行/停止信号 DI 1×8 路

手/自动信号 DI 1×8 路

故障信号 DI 1×8 路

启/停指令 DO 1×8 路

电磁流量计8台 测量信号 AI 1×8 路

故障信号 DI 1×8 路

2.2.2 PLC2(污泥脱水机房内)分控站

控制范围:贮泥池、脱水机房、接触池、加氯间、回用水池

输入输出信号数量为:

贮泥池

潜水搅拌器2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

超声波液位计2台 测量信号 AI 1×2 路

故障信号 DI 1×2 路

污泥脱水机房1座

污泥投加泵3台 运行/停止信号 DI 1×3 路

就地/远控信号 DI 1×3 路

故障信号 DI 1×3 路

启/停指令 DO 1×3 路

电磁流量计2台 测量信号 AI 1×2 路

故障信号 DI 1×2 路

管式污泥浓度计2台 测量信号 AI 1×2 路

故障信号 DI 1×2 路

浓缩压榨一体机2台 运行/停止信号 DI 1×2 路

就地/远控信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

加药泵2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

空压机2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

螺旋输送机2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

反冲洗水泵3台 运行/停止信号 DI 1×3 路

手/自动信号 DI 1×3 路

故障信号 DI 1×3 路

加氯间

加氯系统2套 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

接触池

超声波液位计1台 测量信号 AI 1×1 路

故障信号 DI 1×1 路

PH/T测量仪1台 测量信号 AI 1×2 路

故障信号 DI 1×1 路

浊度测量仪1台 测量信号 AI 1×1 路

故障信号 DI 1×1 路

全自动取样器1台 瓶空信号 DI 1×1 路

瓶满信号 DI 1×1 路

故障信号 DI 1×1 路

余氯分析仪 测量信号 AI 1×1 路

故障信号 DI 1×1 路

在线氨氮分析仪 测量信号 AI 1×1 路

故障信号 DI 1×1 路

在线磷盐分析仪 测量信号 AI 1×1 路

故障信号 DI 1×1 路

在线COD分析仪 测量信号 AI 1×1 路

故障信号 DI 1×1 路

电磁流量计1台 测量信号 AI 1×1 路

故障信号 DI 1×1 路

回用水池

消防水泵2台 运行/停止信号 DI 1×2 路

手/自动信号 DI 1×2 路

故障信号 DI 1×2 路

启/停指令 DO 1×2 路

3主要的闭环自动控制系统介绍

全厂的设备均采用自动控制、遥控和就地控制三种控制方式。

设备的控制方式如下:

现场手动模式:设备的现场控制箱或MCC控制柜上的“就地/远程”开关选择“就地”方式时,通过现场控制箱或MCC控制柜上的按钮实现对设备的启/停、开/关操作。

就地检修维护模式:现场控制箱或MCC控制柜上的“就地/远程”开关选择“远程”方式时,设备控制权在LCS(Local control station)控制站。操作人员通过LCS控制站的操作面板上选择“手动”方式,利用监控画面或键盘对设备进行检修操作。

遥控模式:即远程手动控制方式。现场控制箱或MCC控制柜上的“就地/远程” 开关选择“远程”方式,且LCS控制站的操作面板上选择“遥控”方式时,操作人员通过中控系统操作站的监控画面用鼠标器或键盘选择“遥控”方式并对设备进行启/停、开/关操作。

自动模式:现场控制箱或MCC控制柜上的“就地/远程”开关选择“远程”方式,且LCS控制站的“自动/遥控”设定为“自动”方式时,设备的运行完全由各LCS根据污水处理厂的工况及生产要求来完成对设备的运行或开/关控制,而不需要人工干预。

控制方式设计为:就地手动控制优先,在此基础上,设置远程遥控和自动控制。控制级别由高到低为:现场手动控制、就地检修控制、遥控控制、自动控制。

手动方式是操作人员的专有权利,因为过程连锁在此模式下无效;而自动模式下,安全连锁是有效的,并限制操作的可能性,可防止非正常状态下运行。离工艺过程越近的控制层具有更高的优先权。

3.1粗、细格栅自动控制系统

对格栅设置四种控制方式:水位差自动控制(粗格栅)、时间控制、遥控、手动控制

在格栅前后设超声波液位差仪表,根据水位差测量仪测得的格栅前后水位差值自动控制机械格栅的运行,即水位差达到设定值时,自动启动格栅。当机械格栅停止运行的时间超过设定值时,系统转为时间控制,此时限为可调式设计。

PLC系统将根据软件程序自动控制输送栅渣压实机、机械格栅的顺序启停、运行、停车以及安全连锁保护。任何一台格栅启动时,均启动输送机和栅渣压实机。

3.2水泵自动控制系统

在泵池设超声波液位仪表,根据水位测量仪测得的泵房水位值自动控制多台水泵的启停运行。当泵房水位高至某一设定的水位值时,PLC系统将按软件程序自动增加水泵的运行台数;相反,当泵房水位降至某一设定的水位值时,PLC系统将按软件程序自动减少水泵的运行台数。同,系统累积各个水泵的运行时间,自动轮换水泵,保证各水泵累积运行时间基本相等,使其保持最佳运行状态。当水位降至干运转水位时,自动控制全部水泵停止运行。在监控管理系统和就地控制系统的操作面板上可以设定水位值。此外,在水泵的控制柜中加装仪表自控转换开关,在PLC不能正常投入使用的情况下,可通过超声波液位仪表自身的继电器根据水位自动控制水泵的开停。

3.3沉砂池的自动控制系统

沉砂池的设备自成系统,随设备所带的就地控制箱将带有启动时序和停止时序,以及安全保护程序,自动控制整套沉砂池设备的运行。PLC系统将采集沉砂池全部设备的运行状态,上位监控管理计算机也可远控整套沉砂池设备的启动/停止。

3.4生物池的自动控制系统

在生物池设置超声波液位计、溶解氧检测仪、MLSS检测仪、氧化-还原电位、电磁流量计等仪表,生物池的生物处理过程就是由PLC按照检测仪表的实时测量值和预先编制的控制程序相互配合来完成生物池中各种工艺设备的启停,自动控制系统包括:进水控制、循环控制、空气曝气量自动调节、滗水器控制、回流污泥控制。

3.4.1.进水控制:

通过水位计检测生物池水位。当水位值达到设定值时,自动关闭进水阀,停止进水。

3.4.2.循环控制:

由PLC按照预先编制的程序完成,一个完整的生物处理过程包括四个阶段:进水、曝气、沉淀、滗水。每个阶段一般为1小时,也可根据进水量通过监控管理系统和就地控制系统的操作面板上进行设定。

循环过程如下:

第一时段 第二时段 第三时段 第四时段

1#池 进水/曝气 曝气 沉淀 滗水

2#池 滗水 进水/曝气 曝气 沉淀

3#池 沉淀 滗水 进水/曝气 曝气

4#池 曝气 沉淀 滗水 进水/曝气

3.4.3.空气曝气量自动调节和鼓风机的控制

根据生物池中设定的溶解氧值自动调节生物池中的空气量,保证生物池中的生物处理过程能够顺利进行。空气调节的方法如下:

首先根据池中的溶解氧值来调节鼓风机的变频器控制空气量。在保证生物池内空气需求量和满足曝气管最低压力值的前提下,尽可能地节省能耗,上述各调节相互关联,相互影响,最终达到最佳状态。鼓风机自身控制系统的PLC将带有通讯模块和通讯接口,与现场分控站PLC1采用总线方式的通讯。上位监控管理计算机可远程监测鼓风机系统全部设备的运行状态和故障报警,也可远程控制鼓风机系统开停。

3.4.4.滗水器控制

滗水器设置两种控制方式:时间控制和液位控制,通过设定时间来控制滗水器的运行,当池内液位达到设定最低值而设定的滗水器的运行时间还没结束时,PLC将执行液位控制,停止滗水器动作。当池内液位没达到设定最低值而设定的滗水器的运行时间已结束时,PLC将执行时间控制,停止滗水器动作。滗水器动作停止后将自动复位。

3.4.5.回流污泥量的自动调节

为保证生物池中污泥混合液浓度在工艺生产要求的范围内,采用按时间控制的方式。PLC根据时间控制回流污泥泵的运行时间,实现进水量与污泥回流量的合理配比,从而保证生物处理的质量稳定性。可以通过监控管理系统和就地控制系统的操作面板设定回流污泥比例和污泥回流泵的运行时间。

3.5贮泥池的泥位控制

通过液位计检测贮泥池的泥位,当泥位低于最小值时,停搅拌器。同时发出低泥位报警。

3.6污泥脱水的自动控制

污泥脱水过程按污泥脱水系统自身PLC预先编制的程序控制运行。污泥脱水的程序控制采用时间控制和手动控制。系统设计带有启动时序和停止时序,以及安全保护程序。在药液已制备完成的前提下,设备的启动次序依次为倾斜式输送机、水平式输送机、浓缩脱水一体机、加药泵、进泥泵,停止顺序与之相反。污泥脱水系统的PLC将带有通讯模块和通讯接口,与现场分控站PLC2采用总线方式的通讯。上位监控管理计算机可远程监测污泥脱水系统全部设备的运行状态和故障报警,也可远程控制污泥脱水系统的开停。

3.7电力监控

与污水处理厂电力监控系统建立联系,在中央控制系统设置电力监控程序,显示电力系统的主接线、各段母线的电压、各母线开关的状态和电流、各变压器的状态、各主要用电设备的状态和电流、高压进线、低压进线处的电量数据等,实现监控、管理污水处理厂的电力消耗。

4控制系统软件配置

4.1组态软件

通信组态:生成各种通信关系。明确节点间的通信关系,可实现现场仪表与PLC之间、PLC与监控计算机之间,以及计算机与计算机之间的数据通信。

控制系统组态:生成各种控制回路。明确系统的控制功能,各控制回路组成结构、控制方式与策略。

4.2维护软件

对现场控制系统软硬件的运行状态进行监视、故障诊断,以及软件的测试维护等。

4.3仿真软件

对控制系统的部件(通信节点、网段、功能模块等)进行仿真运行。可对系统进行组态、调试、研究。

4.4设备管理软件

对现场设备进行维护管理。配置专门的设备管理软件。

4.5监控软件

实时数据采集:将现场的实时数据送入计算机,并置入实时数据库的相应位置。

常规控制计算与数据处理:标准PID,积分分离,超前滞后,比例,一阶、二阶惯性滤波,高选、低选,输出限位等

优化控制:根据数学模型,完成监控层的各种先进控制功能:专家系统、预测控制、模糊控制等

逻辑控制:时间程序控制,如完成开、停车的顺序启停过程。

报警监视:监视生产过程的参数变化,并对信号越限进行相应的处理,如声光报警等。

运行参数的画面显示:带有实时数据的流程图、棒图显示,历史趋势显示等。

报表输出:生产报表的打印输出。

操作与参数修改:实现操作人员对生产过程的人工干预,修改给定值,控制参数、报警设定等

4.6 文件管理

数据库管理:在线与历史数据管理、综合利用、保存等。

统计控制软件:按照数理统计方法分析现场采集的工艺变量数据,监视和评判系统的控制与运行状态,指导操作人员全面掌握生产情况,排除故障。以科学方法评估生产过程能力,指导系统改进。包括:在线与历史数据预处理、各种统计控制图、直方图、事件触发采样、在线报警、过程能力分析、分析记录等。

5现场检测仪表

现场仪表作为计算机监控系统的检测单元,其性能的优劣直接影响到整个计算机监控系统的好坏。仪表是现场采集工艺参数的主要仪器,现场设置的检测仪表是本厂实施科学管理的主要因素之一。所以在本工程仪表选型中遵循以下原则:

1.可靠性

由于现场仪表检测的介质成分比较复杂,仪表安装的环境比较恶劣。为了保证污水处理过程的安全、可靠的进行,在选择仪表时选用符合工业级标准的、成熟定型的,且经过现场使用并证明是成功的产品。考虑到水质及现场环境的条件,为防止探头结垢,尽量选用非接触式、无阻塞隔膜式、自清洗式的传感器,且户外安装的仪表变送器保护等级应达到IP65,浸没在水下的仪表传感器保护等级应达到IP68。

2.先进性

在系统可靠性的前提下,先进性也至关重要,因为科学技术在发展,我们选择的仪表,代表着当今的科技水平。产品的先进性主要表现在:仪表全部采用智能型测量仪表;便于计算机系统连接和维护管理的方便,具有自动补偿功能、带现场总线接口、具有兼容性通讯协议、具有自诊断、信号保持、故障报警等功能。

3.方便性

仪表在使用时具有安装操作方便、简单易学、界面清楚、功能实用,维护人员可以很方便的对仪表进行维护、检修等操作。仪表应采用4~20mA的输出信号输出,并带足专用电缆和安装附件。

为了保证仪表在冬季百年一遇的寒冷天气下能够正常工作,室外现场仪表应带有可自控温的仪表保护箱。

本厂设置的在线仪表见下表:

序号 名称 安装位置 位号 测量范围 数量 单位 备注

1 超声波水位差计 粗格栅 LDE-101-102LDIT-101-102 0~15M 2 套

2 超声波水位计 进水泵房 LE-103LIT-103 0~15M 1 套

3 水位开关 进水泵房 LSA-104 1 套

4 空气流量计 沉砂池鼓风机总管 FIRQ-105 DN200 1 套

5 压力变送器 小鼓风机管 PIT-106 0~0.25MPa 1 套

6 电磁流量计 进水管 FIRQ107 DN1000 1 套

7 PH/T计 进水渠道 AE-108AIT-108 2~12PH 1 套

8 浊度计 进水渠道 AE-109AIT-109 0~300mg/l 1 套

9 自动取样器 进水渠道 AP-110 12 瓶 1 套

10 溶解氧测量仪 1#生物池 AE-111A~DAIT-111A~D 0~5mg/l 4 套

11 氧化-还原电位测量仪 1#生物池 AE-112A~DAIT-112A~D -500mv~+500v 4 套

12 MLSS测量仪 1#生物池 AE-113A~DAIT-113A~D 0~10g/l 4 套

13 超声波水位计 1#生物池 LE-114A~DLIT-114A~D 0~9M 4 套

14 超声波污泥界面计 1#生物池 LE-115A~DLIT-115A~D 0~6M 4 套

15 溶解氧测量仪 2#生物池 AE-116A~DAIT-116A~D 0~5mg/l 4 套

16 氧化-还原电位测量仪 2#生物池 AE-117A~DAIT-117A~D -500mv~+500v 4 套

17 MLSS测量仪 2#生物池 AE-118A~DAIT-118A~D 0~10g/l 4 套

18 超声波水位计 2#生物池 LE-119A~DLIT-119A~D 0~9M 4 套

19 超声波污泥界面计 2#生物池 LE-120A~DLIT-120A~D 0~6M 4 套

20 压力变送器 鼓风机管 PIT-121A~H 0~100KPa 8 套

21 铂热电阻温度计 鼓风机管 TIT-122A~H 0~100CO 8 套

22 空气流量计 鼓风机管 FIRQ-123A~H DN350 8 套

23 电磁流量计 回流污泥管 FIRQ-124A~H DN250 8 套

24 超声波液位计 污泥贮泥池 LE-201LIT-201 0~9M 1 套

25 PH/T测量仪 接触池 AE-202AIT-202 2~12PH 1 套

26 浊度测量仪 接触池 AE-203AIT-203 0~100mg/l 1 套

27 自动取样器 接触池 AP-204 12 瓶 1 套

28 在线COD测量仪 接触池 AIT-205 0~1000mg/L 1 套

29 氨氮检测分析仪 接触池 AE-206AIT-206 0.1~100mg/l 1 套

30 磷盐检测分析仪 接触池 AE-207AIT-207 0.05~10 mg/l 1 套

31 余氯测量仪 接触池 AE-208AIT-208 0~100mg/L 1 套

32 电磁流量计 脱水机进泥管 FIRQ-209A~B DN150 2 套

33 管道式污泥浓度计 脱水机进泥管 AE-210A~BAIT-210A~B DN150 2 套

34 电磁流量计 总出水管 FIRQ-211 DN1000 1 套

6设计选型

6.1可编程序控制器(PLC)

PLC采用世界知名公司的最新产品,应考虑选择货源充足中文资料丰富、备品备件方便,技术服务方便、国内有维修处的生产商的产品。PLC的选型应充分考虑其可靠性、先进性、可扩充性,应能满足中高控制性能的要求。考虑到国内用户的技术水平,PLC系统应结构简洁、使用方便、特别是程序编制方法应简单易学。考虑到本厂采用的SBR工艺对自动化管理水平极高的要求,故每个分站都选用双机热备型的PLC。且PLC的输入输出控制点都留有20%以上的余量。PLC柜内加装1:1隔离变压器。

双机热备型PLC的具体要求:

1、 CPU

˙双CPU硬件热备(2 CPU同时参与计算与数据保存,1个CPU控制,1个CPU热备,故障时平滑切换)

˙两个CPU应安装在同一底板上,构成真正的硬冗余

˙双电源供电(包括扩展机架),50/60Hz,170~264VAC

˙32位高速RISC芯片,基本指令处理速度≤0.02μS

˙CPU控制的实际外部I/O点数可达5120点

˙CPU上带RS-232/RS-422通讯口

˙程序内存≥60K步

˙数据内存≥128K字

˙可安装30M或48M存储器卡

˙有断电保持寄存器

˙具有错误历史记录功能

˙支持多网配置及其无缝通讯

˙具有PT可编程终端(触摸屏)接口

˙支持以太网、控制网(Controller Link)、设备网(DeviceNet)

˙指令系统应包括:逻辑指令、控制指令、定时计数指令、数据控制处理指令、增、减四则运算指令、浮点变换及运算指令、调试处理故障诊断指令、块指令、特殊指令

特殊模块(智能模块)品种丰富:PID模块、语音模块、ID传感模块、高速计数模块、模糊控制模块、位置控制模块等、运动控制模块。

I/O模块指标:

数字输入模块(DI):

˙输入点数:32点

˙输入电压:220VAC

˙响应时间:≤55ms

˙外部连接:拆卸式端子排

数字输出模块(DO)

˙输出点数:32点

˙最大开闭能力:AC250V,2A(COSФ=1)

˙响应时间:≤15mS

˙外部连接:拆卸式端子排

模拟输入模块(AI):

˙输入点数:2点、4点、8点

˙输入范围:1-5V,0-10V,4-20mA

˙分辨率:12位以上

˙变换速度:≤10mS

˙外部连接:拆卸式端子排

模拟输出模块(AO):

˙输出点数:2点,4点或8点

˙输出范围:1-5V,0-10V,4-20mA

˙分辨率:12位以上

˙变换速度:≤10mS

˙外部连接:拆卸式端子排

安装PLC单元时,应提供所要求数目的开关柜,包括集成所需的元器件部分和所有上述的接口装置。可编程图形终端将安装在开关柜的面板上。开关柜的尺寸和进线方式将在设计联络会上讨论,开关柜的钢板厚度不小于2.5mm,保护等级不底于IP54。开关拒应有必要的通风和照明所需量等在最终设计时由业主来定。

——PLC管理控制系统将配置的软件主要包括如下:

1) 全套计算机运行和网络通讯软件系统

2) 全套的管理接口和管理控制软件系统

3) 全套数据处理和记录软件系统

4) 全套系统再生、修复、数据备份软件系统

5) PLC组态软件,具有离线仿真功能

6.2可编程终端PT(触摸屏)

为了便于现场操作,在被控现场配置可编程图形终端PT,要求如下:

˙显示器件:TFT彩色

˙有效显示区域: 229*172mm

˙触摸开关分辨率:32*24个

˙显示分辨率:640*480点

˙符合规格:UL/CSA、EC

˙画面数量:≥3000

˙字符显示:256个/画面

˙显示文字:英文、数字、中文

˙文字扩大功能:等倍、横倍、纵倍、4倍、9倍、16倍、64倍

˙图形:直线、矩形、多边形、圆、弧线、扇形

˙通讯接口:RS-422A/RS-485口、以太网接口 RS-232C口 打印机口

˙电源电压范围:DC20.4V~DC26.4V

˙保存温度:-20℃~60℃

˙运行温度:0~50℃

˙保护构造:IP65F

˙链接方式:NT link (1:N、N:1 )(N>=8)

˙采用32为RISC芯片

˙运行时间: ≥25000小时

˙支持工具软件:Windows 98以上环境

˙图形符号数:约1200个 ISO7000的部件

˙能取代手持式编程器对PLC进行编程

6.3现场总线

工厂网络系统采用客户/服务器模式,网络结构使用交换机的双光纤环状结构。分控站选用6通道光缆接口的100Mbps工业以太网交换机,中控室选用24通道光缆接口的100Mbps工业以太网交换机。客户/服务器(Client/Server)模式的分布式实时关系数据库,自适应10/100Mbps传输速率,全双工通信,网络连接设备采用交换机,网络传输介质有光缆、双绞线,主网络系统布线、子网络系统布线统一考虑、综合利用,配置网络操作系统及相关应用软件。

6.4服务器和工业控制计算机

选用P4的服务器和工控计算机,或订货时的最优产品。19英寸9槽工控机箱(含220W工业级电源),INTEL芯片组底板;P4-2.5 G处理器,PCI 64M 显卡,MAXTOR 80G 硬盘,512M 内存,16倍速可擦写式光驱,1.44英寸软驱,PS2键盘,21”彩色液晶显示器。

工厂管理计算机选用P4处理器的微型计算机;便携式编程器选用有网络接口器件的P4便携式计算机。

6.5马赛克模拟屏

马赛克模拟屏,有效面积为(6400×1800 mm2),供货方将与用户详细讨论了整个模拟屏的设计概念后,再进行设计,然后提交第一次彩色建议图,用户讨论修改后,递交第一次修订本。此过程重复进行,直至用户批准最后的修改建议,才能安装此模拟屏。

模拟屏网格由穿孔钢板制造,用螺栓拧紧,形成一个自我支撑的网架。马赛克瓷砖应由塑料制成,边缘不作成斜角,表面没有刺眼的反光。马赛克网格安装在一个框架上,框架由不锈钢制成。马赛克图上安装显示表和指示灯,显示厂内各个工段重要工艺参数和设备运行状态,为了得到音响报警模拟屏内安装—个蜂鸣器。交货同时应交付全部模拟屏支架,木镶板或铝镶板配线管和吊环、端子排。

模拟屏上应包括如下内容:

(1) 过程的模拟指示,用4 寸数码管显示主要参数值:

(2) 过程的状态显示及报警指示,报警信号闪烁指示;

(3) 在模拟屏下方设试验和复位按钮等;

(4) 模拟或数字指示应位于在模拟屏上设备符号的附近;

(5) 数字式日历/钟应放在模拟屏右上角;

(6) 一个端子区连接所有进出模拟屏的电缆;

(7) 模拟图采用镶嵌式模块构成,每个模块单元约25×25mm。其中要求有效面积4800×1800 mm2。

(8) 模拟屏应在安装现场组装,每组最大为2200×600×600mm,分若干组运至现场。

6.6打印机

选用喷墨打印机、激光打印机、彩色喷墨打印机,并适当增配内存容量。

故障打印机——A3 单色喷墨打印机,配备有连续走纸机构;

报表打印机——A4 彩色激光打印机;

图表打印机——A3 彩色喷墨打印机。

6.7电缆

工业以太网采用可直接埋地的光纤电缆,信号回路采用总/对屏蔽型计算机电缆,电源回路采用屏蔽型控制电缆。

构筑物内缆线采用电缆桥架和保护钢管敷设,厂区缆线采用电缆沟和PVC保护管直埋敷设。

6.8供电电源

220VAC采用在线式、隔离型、连续双转换或后备式的UPS不间断供电电源,蓄电池续流能力为0.5或1.0小时以上;24VDC配置独立的高品质直流稳压电源。

中央控制室—3kVA 1.0小时 在线式

现场控制站—2kVA 1.0小时 在线式

6.9防雷、过电压保护及接地

对中央控制室、现场控制站的电源进线设置两级避雷器。对非光缆通讯网络端口、以及4~20mA模拟信号端口配置相应的防雷保护器件。

接地装置按照国家标准,根据系统接地要求等电位或分别接地。

6.10软件配置

全部软件均为中文版Microsoft Windows NT运行环境,软件容量包括二期工程所需的I/O量。系统选配的主要软件:

6.10.1 系统软件

Windows NT 网络操作系统、工业实时监控组态软件开发版、运行版和监控版、实时分布式关系型数据库系统、现场总线组态软件、可编程序控制器专用编程及监控软件。

6.10.2 应用软件

仿真调试程序、软硬件测试、故障诊断程序、实时监控软件、实时通讯软件、数据库应用程序、污水处理厂监控管理专家系统、标准工业控制、专用水处理过程控制图形库、网络防病毒软件(具有线监控的防火墙功能)

6.11现场检测仪表

6.11.1超声波液位差计

A.概述

功能:测量、指示和传送液位差信号

形式:超声波

组成:水位传感器、变送器及全部安装附件和电缆

B.性能

测量范围:0~9m 测量精度:0.2% 环境温度:-20℃~60℃

稳 定 性:十二个月0.1%,并可去除水面巨烈波动的干扰

重 复 性:<0.1%fs 零点迁移:盲区以外任意设定

C.指示器:LCD数字指示,并具有现场操作功能

报警信息:3路继电器输出,可设定

断电自动储存系统数据

故障报警:开关量输出自身报警220VAC,5A 防护等级:传感器 IP68 变送器 IP65 变送器输出信号:隔离4~20mA 供电电源:220VAC, 50Hz 断电自动存储系统数据 连接电缆:10米

规格:对屏蔽加总屏蔽

6.11.2超声波液位计

A.概述

功能:测量、指示和传送液位信号

形式:超声波

组成:水位传感器、变送器及全部安装附件和电缆

B.性能

测量范围:0~9m 、0~15m 测量精度:0.2% 环境温度:-20℃~60℃

稳 定 性:十二个月0.1%,并可去除水面巨烈波动的干扰

重 复 性:<0.1%fs 零点迁移:盲区以外任意设定

C.特点

指 示 器:LCD数字指示并具有现场操作功能

报 警:3继电器输出,可设定

显 示:LCD发光显示,并具有现场操作功能,断电自动储存系统数据

D.传感器

防护等级:IP68

E.变送器

隔离输出信号:4~20mA,DC 电源:220VAC, 50Hz,断电自动储存系统数据

故障报警:开关量输出,自动报警220VAC,5A 防护等级:IP67

G.电缆

长度:10米

规格:对屏蔽加总屏蔽

6.11.3液位开关

浮球开关是吊挂式的,带有灵活移动电缆,电缆长度15米,浮球根据重力设计,它由一个封闭在硬塑料盒内的开关和三芯线电缆组成。当水位上升或下降时,二个触点就会切换,在切换过程中有一个死区,死区的范围为两边约20°。

额定电压和频率230V,50HZ

保护等级IP68

6.11.4 在线PH/T测量仪 A.概述

功能:测量、指示和传送过程检测介质的PH值信号

形式:复合电极(测量电极、参比电极和Pt100温度电极复合一体)

组成:测量、变送、元件及全部安装附件,自清洗装置 B.性能

测量范围:1~12PH

测量精度:0.5%

信号输出精度:0.75%

重 复 性:0.2%

指 示 器:LCD数字并有现场操作

带温度补偿,并可同时输出温度信号4~20mA C.两路输出信号:4~20mA,DC D.电源:220VAC,50Hz E.断电自动储存系统数据

F.故障报警:开关量输出自身报警220VAC,5A(3路) G.检测方式:浸没式

H.电 缆:长 度:10米

J.变送器安装方式:墙挂式

6.11.5在线浊度测量仪

A.概述

功能:测量、指示和传送过程检测介质中的浊度

形式:90度散射光

组成:测量、变送元件及全部安装附件和清洗装置

B.性能

测量范围:见仪表清单

测量精度:0.5%

信号输出精度:0.7%

重 复 性:0.2%

指 示 器:LCD数字并有现场操作

气 泡:要求具备气泡消除系统

清洗装置:机械(电刷)自清洗,带温度补偿 C.两路输出信号:4~20mA,DC D.电源:220VAC,50Hz E.断电自动储存系统数据

F.故障报警:开关量输出自身报警220VAC,5A(3路) G.检测方式:浸没式,浸没深度2米

H.电 缆:长度:10米

I.防护等级:IP65

J.变送器安装方式:墙挂式

6.11.6自动取样装置

A.概达

功能:定时自动取出过程介质样品,供化验分析

形式:真空法

组成:定时及控制装置和样品容器

B.性能

取样距离:30m

取样高度:6m

带12个1.9升容器和样品分配器可自动取样

带加热器,可低温现场运行

C.电源:220VAC、50HZ/60HZ

D.断电自动储存系统数据

E.尺寸(H×W×D):740×695×455mm

F.环境温度:-15℃~+40℃

G.防护等级: lP55

6.11.7氨氮分析仪

A. 概述

功能:测量、指示和传送水中NH4+ 的含量

形式:利用自动在线光度计比色法来测定水中氨、氮盐的含量

组成:包括沉淀单元、采样系统、分析单元及附件

B. 性能

测量范围:见仪表清单

测量精度:量程的±3%

环境温度:5~40°C

防护等级:IP54

测量间隔:4~120分钟

测量时间:3分钟

反应罐容量:2x5L

采样量:15ml/测量点,1ml/分钟

C. 特点

带有自监测功能防止任何误操作

在程序间隔期,系统可自动标定,0~72小时标定一次

带自清洗功能,0~72小时清洗一次

D. 输出信号

1路4~20mA模拟信号并有可编程的继电器接点信号用于限位

1个串行接口RS232C

E. 电源:220VAC,50/60Hz

F. 外形尺寸(LxWxD):820x530x455mm

6.11.8磷盐分析仪

A. 概述

功能:测量、指示和传送水中PO43+ 的含量

形式:利用自动在线光度计比色法来测定水中磷盐的含量

组成:包括沉淀单元、采样系统、分析单元及附件

B. 性能

测量范围:见仪表清单

测量精度:量程的±3%

环境温度:5~40°C

防护等级:IP54

测量间隔:7~120分钟

测量时间:6分钟

反应罐容量:1L

采样量:10ml/测量点,0.1~1ml/分钟

C. 特点

带有自监测功能防止任何误操作

在程序间隔期,系统可自动标定,0~72小时标定一次

带自清洗功能,0~72小时清洗一次

D. 输出信号

1路4~20mA模拟信号并有可编程的继电器接点信号用于限位

1个串行接口RS232C

E. 电源:220VAC,50/60Hz

F. 外形尺寸(LxWxD):820x530x455mm

6.11.9 溶解氧测量仪

功能:测量溶解在水中的氧含量

组成:传感器,变送器,安装架及连接的电缆

技术参数:

A. 金属电极,带磨石清洗

B. 电极表面带自清洗系统,低维护

C. 自动温度补偿

D. 230VAC电源供电

E. 传感器防护等级IP68,变送器防护等级IP65

工作温度-20~50℃

F. 测量范围:见仪表清单

G. 含氧量信号输出4~20mA,精度1%

H. 安装杆及支架材料:316L不锈钢

I. 变送器与传感器之间连接电缆:10M

6.11.10 超声波固体悬浮物浓度测量仪

概述:利用超声波衰减原理测量、指示和传送过程检测介质中的悬浮物浓度

检测原理:超声波衰减原理

变送器性能:

测量范围:0.2~60%含固体积比

精度:测量范围的0.5%

工作温度:-30 ~55℃

防护等级:IP65

电流输出:4 ~ 20mA

电源: 115/230V

输出:二个可编程继电器输出

传感器性能:

安装方式:采用悬挂安装方式,将传感器定位于沉淀池内适当高度,测量颗粒浓度

工作温度:-70~50℃

传感器材质:316不锈钢

防护等级:IP68

传感器电缆:专用双绞屏蔽电缆

频率:1MHZ或3.3MHZ

输出:带两个可编程继电器输出

清洗方式:自动清洗,具有免维护功能

6.11.11电 磁 流 量 计

一、概 述:

功 能: 测量、显示及转换管道中导电性介质的流量。 类 型: 法兰连接。

组 成: 传感器、信号转换器、 全套安装附件及电缆。

二、技 术 要 求:

测 量 原 理 : 法拉弟电磁感应原理 ; 电 源 :220VAC, 50Hz;

输 出 信 号 :4-20mA 模拟输出及脉冲/频率输出; 精 度:0.5%; 重 复 性:0.1%;

电 极 :包括测量电极、接地电极;并具有空管检测功能;材质为AISI316Ti; 内 衬 :氯丁橡胶; 测 量 介 质: 污 泥;

允 许 最 低 导 电 率:5 mS/cm;

保 护 等 级:传感器IP68;信号变送器IP67; 环 境 温 度:-20oC~50oC; 介 质 温 度: 0oC~95oC;

直管段上部为管径的5倍,下部为管径的3倍以上;

信号变送器 :可对传感器电极进行交流及直流清洗,可以调整零位和量程,具有自我诊断、故障报警及小流量信号切断功能;

显 示: 为带背景光的液晶三行显示,每行20 个字符,可同时显示瞬时流量、累积流量及故障信息等其它选项;

传感器和变送器为分离型或一体型;(注:一体型时保护等级可达IP67;分离型时保护等级可达到IP68。)

6.11.12 超声波泥位计

功能:测量沉淀池中泥位和上清液浮渣浓度

形式:超声波

供电电源:220Vac

输出:4~20mA SPDT节点输出

最大池深:6.1米

泥位量程:5.8米

盲区: 12英寸(距传感器面)

死区: 3英寸(距池底)

分辨率: 0.1英尺

线性度: ±0.5%的量程

数显: 两行20字符真空荧光内置触摸键

6.11.13压力变送器(智能型)

概述

功能:测量、指示和传送压力信号

形式:干式陶瓷传感器和2线式变送器

A、 性能

测量范围:0~100KPa

测量精度:0.2%

环境温度:-20°C~60°C

稳定性:十二个月 0.1%

量程比:10:1

零点迁移:满量程 90%

B、 特点

安装位置:任选、带现场显示线性度:>=0.1%

结构:变送器、测量元件一体安装

抗过载能力:100倍量程

C、 变送器

隔离输出信号:4~20mA, DC 带HART协议

电源:12.5~30VDC

防护等级:IP65

安装方式:柱装或墙装

防护等级:IP65

(14)空气流量计

概述

功能:测量传送气体质量流量信号,以nm3/h(标立方米每小时)单位输出。

检测原理:热扩散原理,仪表以标准单位测量气体无须温度及压力补偿。

安装方式:插入式

组成:传感元件两个热电阻(铂RTD)、变送元件及全部安装附件和装置

测量性能

精度:+-0.75%的读数+0.5%满量程。

重复性:+-0.25%

响应时间:1秒

操作性能

流量范围:0~6100nmps

气体压力:21BAR

温度:传感器 40~250OC

电子单元40~55OC

供电:115/230VAC,50/60Hz

输出:4~20Ma,隔离

物理性能

显示:瞬时流量nm3/h 累计流量nm3 累计时间hrs 交替显示各参数

外壳:分体NEMA4X外壳,防护等级IP66

传感器材质:316不锈钢,哈氏C-276合金

插入式传感器:探头直径 1/2// 安装螺纹3/4// NPT

6.11.14温度变送器

温度变送器选用一体式的仪表,探头为Pt100,变送器信号输出4~20mA,供电电源24VDC两线制仪表。

性能:

测量范围:0-50oC

精 度:0.5%

信号输出精度:0.7%

重 复 性:0.2%

管道安装,配齐安装支架。

防护等级:IP68

6.11.15氧化—还原电位测量仪

功能:测量、指示和传送过程介质中的氧化还原电位信号

形式:电化学法

组成:测量元件、变送器、连接电缆和安装支架,带自清洗装置

测量范围:-500mv~+500v

分辨率:1%

指示器:LCD

隔离输出信号:4~20mA,DC

电源:220VAC,50HZ

传感器安装:明渠

连接电缆:10米

保护等级:变送器IP65 传感器IP68

6.11.16管道式污泥浓度计

功能:测量和传送管道内污泥颗粒的浓度值

形式:超声波

组成:管段传感器,控制变送器和连接电缆

管段传感器的管段材料和换能器材料为不锈钢。管段涂有环氧树脂以最限度地减少传感器表面被油脂及泥渣堆积,换能器安装于管道两侧并与管道内壁齐平,故因污水的流动起到自清洗的作用。传感器应带有排污阀。

变送器:校验简单 4~20mA输出

触模式键盘编程 2路继电器输出报警

6.11.17余氯测量仪

概述

功能:测量、指示和传送过程检测介质中的余氯信号

形式:极化法

组成:测量、变送、元件及全部安装附件和装置

性能

测量范围: 0~5mg/l

分辨率:0.5%

精度:0.5%

指示器:LCD数字并有现场操作

带PH和温度补偿

两路输出信号:4~20mA DC

电源:220VAC,50Hz

断电自动储存系统数据

故障报警:开关量输出自身报警220VAC,5A(3路)

检测方式:流通式

电缆:

型号:仪表厂家确定

长度:承包商确定

防护等级:IP65

变送器安装方式:墙挂式

6.11.18在线COD分析仪

功能:在线测量COD的含量。

环境温度:2-40°

相对湿度:0-90%

电源:220Vac,50/60Hz

测量原理:比色法

测量范围: 0-1500mg/L

测量周期:1-30min可选

结果显示:LED 数字显示

测量精度: 3%

测量重现性:2%

仪表保护等级: IP65

输出:4-20mA 输出, RS 845 输出

安装方式:挂壁式安装

组成:测量单元,显示单元,安装组件及电缆

6.11.19仪表保温箱说明

仪表保温箱应为可自控温的不锈钢材质的仪表箱,尺寸应改为LXBXH =500X400X400,箱体本身可自动调节箱内温度,适应环境温度最低零下40度,箱内维持温度大于零上5度,防护等级IP55,箱内提供220VAC电源接线端子。箱内发热体连续工作寿命不低于20年。

控制系统供电

为了保证整个控制系统在紧急停电情况下还能正常运行,在中控室和分控室中都配置不间断供电电源UPS,UPS是静态整流器/逆变器型,并有储能电池,要求输出为正弦波,并应对指定的设备提供不间断电源。它应安排成在主电源不符合规定要求时,避免设备的破坏或扰动。在正常状态,电源应通过整流器/充电器向储能电池供电并向逆变器供电。通常由送变器向荷载供电。在主电源有故障时,应由电池通过逆变器向荷载供电。当电源恢复正常,荷载供电应恢复到正常,电池应自动充电。在任何情况下,向荷载供电应保持不断。对UPS输出的要求如下:

电压——220VAC±3%

频率——50HZ±0.2%

正弦波失真率—— <3%

UPS荷载——按承包商的设计容量再加20%

电池容量——2KVA0.5小时

电池形式——铅酸

过电压保护装置能抑制出现在电力网络中的暂态浪涌电压和吸收暂态浪涌电压能量,在保障供电连续的条件下,保障计算机、PLC控制站及其它主要设备免受过电压的干扰和侵害,使用电设备安全正常地运行。

过电压保护装置应符合以下条件:

应用方式——单相

每根最大能流(8×20μs)——25kA

7设计标准、规范

A.全厂的自控系统和现场仪表的设计应符合下面所列标准或规范:

《过程检测和控制流程图用文字和图形符号》

(GB2625-81)

《控制室设计规定》

(HG20508-92)

《仪表供电设计规定》

(HG20509-92)

《信号报警、联锁系统设计规定》

(HG20511-92)

《仪表配管、配线设计规定》

(HG20512-92)

《仪表系统接地设计规定》

(HG20513-92)

《分散型控制系统工程设计规定》

(HG/T20573-95)

《工业自动化仪表工程施工及验收规范》

(GBJ93-86)

《分散型控制系统工程设计规定》(HG/T 20573-95)

《过程检测和控制流程图用图形符号和文字代号》(GB 2625-81)

《控制室设计规定》(HG 20508-92)

《仪表供电设计规定》(HG 20509-92)

自控系统和现场仪表的选型要求所选产品应符合下面所列标准或规范之一:

ISO 国际标准化组织

IEC 国际电工委员会

GB 中国国家标准

JIS 日本工业标准

UL (美国)保险商实验标准

NK 日本海事协会

LLOYD 英国劳氏船级社

EC 欧洲安全标准

ODVA 开放型设备网制造商协会

承包商所选用的产品标准和规范与标书所列标准和规范有不同之处时,承包商必须以书面的形式进行全面的说明。

8 投标商职责

供方应对以下事项负责:

A.遵照本合同要求,对设备的设计及应用等各方面负责;

B.保证各设备及设计的整体统一性;对全面的系统工程负责,保证所有设备、部件和系统组成一个完整的监控系统;

C投标商必须派遣合格的技术人员到施工现场负责指导安装及调试和人员培训。合格的技术人员必须至少有5年以上安装和调试同类产品及系统的工作经验,必须有人员培训的工作经验。并应向买方提供派遣的技术人员资质的工作业绩资料。指导安装及调试的工作人/日数应在标书中注明。并给出单个人工日的报价。

D.必须提供为达到标书规定功能所需的各种部件,如信号隔离器、滤波器、保护装置、放大器、转换器及其它类似的部件。不论这些部件是否在本合同中具体提出,系统必需部件全部由供货方提供;

E.对所有有关线路及设备负责提供保护,以免受雷击及感应电流的影响以及其它外力的损坏;

F.投标商必须派送合格的技术人员,负责提供及指导安装所有联锁、报警及其它设备以保证安全、有效的运转。对合同所提供的设备进行试运行技术工作,直至设备能符合规定的技术性能指针,正常的投入生产性运行为止。

G.投标商应当保证所有提供的设备,在制造上以及元器件上都是符合标准规定的,除另有规定外。在验收合格后的3年内,如发现隐害或质量问题时,投标商应毫不拖延地修复,不能修复的予以更换,使其符合规定要求。其费用由投标商负责。如因其危害带来的损失或由此引起的其它部分损失,其费用也应由投标商负责。仪表、控制及监视系统应符合相应的IEC标准和中国标准:GBJ93—88,除非另有明确的说明。

H.投标商对全厂控制系统的软件编程负责,并负责全厂的设备的联动调试。(包括机械设备与控制系统的通讯连接,以及完成全厂设备的统一控制协调功能。)在设备安装、调试及试运行期间,至少必须有1名现场技术人员负责与买方联系工作。在没有得到买方同意,不得更换、撤走任何现场技术人员。 ---设计资料的提供

投标商应负责提供与供货设备相关的及供货界线内的所有必要资料,以便使设计人员圆满完成详细设计。包括:

A. 投标商供货范围内的设备图纸及设备说明书。 B. 在设备安装时对土木构筑物的专门要求及修改图纸。 C. 交货界区内设备的工作图及安装图。 E. 各分项规范中所要求提供的技术资料。

F. 交货界区内用自控设备清单,指明穿过交货界区的电缆连接件和电缆一览表、端子图。

G. 处理厂控制系统软件和电缆表、端子接线图。 ---设备安装运行维护手册

投标商在设备交货的同时应提供全套由制造厂签字的技术文件及所有设备的安装操作、维修手册。这些设备包括污水污泥处理控制设备、仪表设备、中心控制及其它控制装置等。

所有设备必须提供满足现场装配的设备装配图。 --- 提交文件的式样

A. 投标商提供的技术文件应该完整、清晰易读,并且正确。

B. 全部资料应分类清晰、适当的装订成册,活页夹为硬塑料夹,夹内文件应取放方便。

文件份数

A. 设计资料(设备资料)3份(业主2份,设计院1份)。

B. 安装、操作、维护手册4份(业主3份,设计院1份)

9投标商职责范围

A.投标商必须提供足以使合同包内设备联动运行的设备和附件、软件(包括软件编程和系统调试),确保设备联动功能的实现。如果投标商发现买方提出的招标文件、设计文件存在缺陷,将妨碍上述要求的实现,投标商有义务在标前会上明确提出修正建议,买方将在开标前30天内告知投标商有关建议是否被采纳。

B. 对设备的制造、供货、工厂测试、油漆、包装和运输负责。并负责设备安装的指导、调试、检查、验收。

C. 运行检测前的设备现场调试。

D. 设备的现场性能测试。

E. 运行检测结果合格后,将设备的检测报告提交业主。

F. 对不合格的设备进行更换。

G. 试运行期内的设备检测、保修和运行监理。

H. 在正式由业主操作的一年运行维护期内,将负责设备的保修和运行的监理工作。

10 设备保证

A. 投标商必须保证自验收完毕之日起一年之内为保证期。在保证期内,投标商应对各设备保养,并实施至少两次整体检查。保证期间如在正常操作情况下,任何设备因设计不当、材质缺陷或制造欠佳等因素而发生故障,投标商应在接到通知后,毫不拖延地负责修复至顺利运转。如投标商未在规定的期限内修复,业主有权自行处理,其费用应由投标商负责赔偿,不得异议。

B. 设计人有权拒绝使用那些被发现有缺陷的或与合同要求不符的设备或零件,这些设备或零件由投标商修好或更换,业主不担负所增加的费用。

11投标商提供的图纸和资料

A.投标商应在其中标后二个月内向业主及中国市政工程华北设计研究院提供3份完整的所有供货设备的必要技术资料,以便使设计院的设计人员进行详细设计。投标商应按标书的要求及技术规范中对资料提供的要求去做。

B.如果投标商不能一次按时提供全部资料,可以在二个月内提交第一批资料,在第三个月内提交第二批资料(后一批资料)。

C.图纸和资料的补充。

在详细设计阶段及施工阶段,有关设备的补充资料也应及时提交业主和设计人员。

D.图纸的修改

本标书的技术要求对投标商均是严格的规定,投标商应遵守这些规定。但投标商也可根据自己提供的设备对设计院的图纸提出必要的改动建议,但这些改动必须征求设计工程师的同意。

12设计联络

在设计阶段,为了保证整个污水厂的控制系统、在线仪表与电气和工艺设备能紧密衔接,使最终设计能顺利完成,拟在设备到货前投标商将安排两次设计联络会议,在国内中国安徽省合肥市或中国天津市)召开,投标商将派遣其技术人员到中国安徽省合肥市(或中国天津市)参加两次设计联络会议(包括设计会签及校核和审查会议),每次会议为期一周。由投标商承担联络会议期间一切费用,其费用单独列入技术服务费中。

第五篇:污水处理厂西门子PLC自控系统的设计

污水处理厂自控系统的设计方案

污水处理厂自控系统是整个污水处理工程的重要组成部分,其设计好坏与控制设备选择是否适当,不仅关系着自控系统的性价比的高低而且对以后整个污水处理厂运行维护的难易有着重要影响。笔者以某市污水处理厂这个实际工程为例,对污水处理厂自控系统的设计进行详细阐述。

一、污水处理厂概况

该污水处理厂位于市中区,为日处理能力为5万吨/天的污水处理厂,出水排入黄海,水质达到国家一级排放标准。

本工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池,。水解池出水自流入AICS进行好氧处理,出水达标提升排入黄海。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:

污水处理厂处理工艺流程

二、污水处理厂自控系统设计的原则

从污水处理厂的工艺流程可以看出,该厂的主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。

为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。

三、自控系统的构建

污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。

1、 基本系统的选择

目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。 DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。

基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。

DCS系统适用于模拟量多,闭环控制多的系统。而现场总线系统的主要优势是适用用于控制点相当较少而且特别分散的系统。从施工和维护的角度来看,传统的DCS系统布线的工作量要远远大于现场总线系统。此外,现场总线系统与DCS系统相比,还有最为重要的一点是开发性好,扩展方便。

本工程的控制点在700点左右,模拟量只占20%左右,属于规模比较小的类型,而且这些控制点是以工艺处理单元为界线分散在厂区各处,因此本工程采用现场总线作为基本控制系统。

2、通讯网络选择

现场总线系统最主要的特点就是依赖网络通讯,分散控制和信号采集,最大程度的减少布线,节省安装和维护费用。现场总线主要是指从现场控制器或 IO模块到监控系统的通讯网络。目前现场总线,根据通讯协议的不同可以分为很多种,比如,Profibus、CAN、ControlNet、 DeviceNet FF Lon总线等。目前现场总线技术还没有统一的标准,各自的功能特点基本一致,因此本工程设计时选用在中小型控制系统应用非常广泛的ProfiBus总线。其在性价比较高,且在国内推广的时间长,稳定性较高。

Profibus总线有三种形式DP、PA和FMS。PA总线是与智能仪表结合在一起安全性非常高的一种ProfiBus总线形式,造价比较高,常用于石油化工冶金等行业;FMS总线适用于大范围和复杂的通讯系统,旨在解决通用性通讯任务,传速速度中等;DP总线是用于传感器和执行器级的高速数据传速网络,不需要智能仪表配合,安全性略低于PA总线。本工程是污水处理工程,对通讯安全性的要求并不太高,通信的任务比较简单,对系统的传输速度有一定要求。因此本工程的采用ProfiBUS-DP网络,即用西门子S7系列PLC搭建整个系统。总线采用普通双绞作为传输介质,通讯速率可以达到 12MBP。

3、现场站设备配置的选择

对于Profibus-DP网络来说只是提供了一个从现场到监控层的信息通道,但信号的采集和执行命令的下达仍然需要由控制器和现场的IO模块组成的站来完成。ProfiBus-DP网络是一种主从站的网络结构。整个网络上最多可以有128个从站,但只有一个作为主站,所有的通讯事务都由主站来管理。主站必须要有控制器(CPU),同时也可以安装IO采集模块。从站有两种方式:CPU+IO模块和通讯模块+IO模块。第一种方式每个从站都由 CPU,每个站的控制事务都由本站完成,与主站之间的通讯量比较少。第二种方式是所有的从站都没有CPU,所有的控制事务都由主站CPU来完成,通过总线网络把命令结果传输到从站完成,从站只是远程IO。

前述这两种从站组成方式各有自己的特点。第一种方式,控制比较分散,通讯事务较小,对网络的依赖不强,但每个站都有CPU,造价高。第二种方式,控制集中,控制事务对网络依赖性强,需要可靠的网络来支撑,同时对主站CPU的性能要求高,在软件编程和调试方面具有很大的优势。这两种方式对工程的现场安装布线施工影响比较少。

本工程控制点的规模施工调试工期比较短,选用了性价比比较高的第二种方式作为从站的组成方式即由西门子IM153通讯模块和S7 300系列IO模块组成,主战CPU选用S7 315-2DP系列。

4、人机界面设备的选择

人机界面设备是直接与操作管理人员进行交流的监控视备,一般由两部分组成,即现场监视设备和中控室监视设备。现场监视设备可以是PC机或是触摸屏,中控室监视设备一般由工控机、模拟屏或投影仪等组成。监视设备应在兼顾投资的情况下,保证操作管理人员可以对整个污水处理厂全面直观的监视与控制。

现场监视设备一般在比较重要的单元或控制事务比较大的从站中设置,以便操作人员及时对现场情况进行处理。本工程的从站的规模比较少,厂区大小从操作距离来看并不大,同时现场操作间内均设有有线电话,因此可在不设不设现场监视系统的情况下保证现场与中控室的联络畅通。

中控室监视设备是全厂的指挥和信息处理中心,其作用不言而喻。中控室监视设备比较传统的做法是模拟屏加工控机的方式,这种方式造价比较高且复杂。随着多屏卡功能的不断完善,现场又出现了工控机多屏显示加投影仪的模式。多屏卡的安装使得一台工控机可以同时拖动多台显示器,并显示不同画面,不同的工段可以同时显示,保证了操作人员监视的全面性。投影仪可以把所需要的任何画面进行放大显示,也可以供人参观。第二种方式的造价要远低于传统做法。本工程选用APPinx一拖四的多屏卡和东芝投影仪一台。

5、其它

成套设备的耦合

本工程中鼓风机为高速离心风机,脱水机为2000mm带宽脱水机,均为大型设备。这些大型设备是由许多辅助电动部分与主机共同工作完成鼓风机和脱水机的正常工作。本工程设计要求大型设备都单独配有自己小型的控制器,由供应商根据自己的经验编制相关程序并预留Profibus-DP接口,最终成为整个自控系统的一个从站。这样就其它大型设备自控系统与整个自控系统无缝连接,减少了不同供应商之间任务的交叉重叠。

监控软件的选择

监控软件是人机交流的桥梁和翻译,是保证整个自动控制系统易操作、易维护最重要的部分。应选用成熟、先进并应用广泛的知名监控软件,本项目选用力控PCAUTO组态软件。

自控控制系统与管理层的衔接

自控系统操作与污水处理厂管理层的衔接主要是把自动控制系统收集到的全厂信息可以顺利传输到管理层计算机,管理人员可以在线查看污水处理厂的运行状况并调用相关的运行数据。随着监控软件的供应商对INTERNET技术的不断应用开发,监控软件都可以通过局域网或INTERNET广域网进行信息发布,管理层或授权用户在任何可以上INTERNET网的地方便可浏览运行状况。而所使用MS IE浏览器的安全性问题已经得到解决。

冗余问题

由于本工程为污水处理厂工程,其安全性和可靠性要求并不严格,本设计没有对通讯网络和控制器进行冗余配置,只对上位工控机采用了双机热备配置。笔者认为在资金允许的情况下,应对主控制器进行冗余配置。

四、自控系统的站点划分

根据污水处理工艺的工作原理以空间分别特点,在布线最小、功能完整的情况下对全厂的站点进行了划分,子站为泵房站、水解池站、1号改进SBR 站、2号改进SBR站、脱水机房站和鼓风机房站。泵房子站负责提升泵房、粗格栅、细格栅和沉砂池的数据处理,脱水机房站除负责脱水机房外,集泥池、浓缩池也归在该站内,其余子站负责各自的工艺单元。主站为变电所站,设在变电所内。各站配置控制点数量统计如下表:

工段名称 控点类型及数量

DI DO AI AO

泵房子站 96 16 20 2

水解池子站 64 32 16

1号改进SBR子站 160 64 32

2号改进SBR子站 160 64 32

脱水机房子站 24 8 8

鼓风机房子站 设备配套PLC并提供接口

各站所配置的控制点数量,富余量均大于20%。本工程自控系统的结构如图2所示:

污水处理厂自控拓补图

五、自控系统的仪表选择

仪表系统遵循“工艺必需、计量达标、实用有效、免维护”的原则进行设计,仪表配置如下:

粗格栅渠配置超声波液位差测量仪表1套;

集水池配置超声波液位测量仪表1套;

细格栅进水井:pH及温度测量仪表1套;

细格栅渠配置超声波液位差测量仪表1套;

AICS反应池配置溶解氧测量仪表及悬浮物浓度测量仪表各4套;

AICS反应池进气管路流量测量仪表3套;

鼓风机房配置鼓风机进出风管压力测量仪表6套;

集泥池配置超声波液位测量仪表1套;

脱水机房配置脱水机进泥管路流量测量仪表2套(随污泥脱水设备成套);

絮凝制药装置液位开关2套(随污泥脱水设备成套);

变电所配置各出线回路的电量测量仪表。

尽管上述仪表中部分仪表已经实现的国产化,但是在精度和稳定方面与进口产品还有一定的差距,因此上述仪表中除通用的流量、温度和压力仪表外,其它均采用进口产品。

六、自控系统的功能设计

自动控制系统除了保证污水处理工艺的正常运转外,还有可以提高处理工艺的整体优化水平等,本工程的功能设计主要归纳如下;

1、单体设备控制

对单体设备来说其控制分为三个层次,其优先顺序为现场手动控制、上位手动控制和PLC自动控制,这样现场发现设备故障时可以最快的速度切断故障设备的运行,最大程度地降低设备的损坏程度。在整个系统中,单体设备的损坏时保证系统其它无关联设备的正常运转。

2、节能控制

本工程的节能设计主要包括提升水泵的变频控制和好氧部分溶解氧自动调节控制两部分。

通过变频器与液位计形成闭环控制,保持集水井内液面的稳定,这样可以减少因提升泵的启动对处理系统造成的冲击,保证系统的稳定运行,同时根据水量变化调节水泵频率,降低了运行能耗。

为保持AICS反应器曝气部分溶解氧浓度稳定在2mg/l左右,通过控制鼓风机进口导叶角度来实现鼓风机的流量的调节,达到节能的目的。

此外,液位差控制的格栅的按需运转也是节能设计的一部分。

3、信息处理设计

通过上位监控软件系统直接采集的在线仪表数据,并以数据报表和图形显示,还可根据处理工艺原理自动对所采集的数据进行分析和推导,提炼出对运行操作更有指导意义的数据。如:

污泥负荷、 提升水泵运行效率、污泥龄、絮凝剂投加比例、鼓风机运行效率、泵房提升单方水量的电耗、鼓风机每1000m3供风的电耗、单方污水污泥处理的电耗、低压总电量、附属设施耗电量、工艺设施总耗电量、提升电耗、供风电耗以及工艺其它各个工艺构筑物的电耗等等。

七、自控特点:

1、低投资:投资少

本工程除一些精度要求高的在线监测仪表(污泥浓度计、溶解氧仪和液位计)为进口仪表外,其余部分在线仪表实现国产化,节省了一部分投资费用。

另外,从工艺控制角度看,省区了一些不影响工艺运行要求的在线仪表,如ORP计、气体流量计等。不设现场监视设备的也是降低投资的重要原因之一。

在自控系统的总线技术选取上、现场I/O控制设备和上位监控设备的选取上,均采用了性价比较高的产品。如PLC采用西门子S7-300系列等。

本自控系统从以上几点节约了大量的费用。

2、低费用:运行费用低

在占全厂能耗90%的原水提升和鼓风曝气这两个环节上,依托自动控制系统,进水段实现恒液位、变流量控制,由大功率变频装置拖动大流量潜污泵,完全涵盖了500—3000m3/h的流量范围,克服了多台泵切换启停,流量突变对后续工艺的水力冲击,也达到节能的目的,立式潜污泵的提水电耗为 4.75kwh/km3。

占全厂能耗75%以上的鼓风机选用单级高速离心风机,通过控制进口导叶开度调节风量,从而降低能耗,具体的作法是在夜间小水量和过渡工序时自动减小供气量。

3、管理操作简便

本自控工程在上位软件二次开发过程从人性化角度出发,提高自控系统的可操作性,使管理者在任意时间和地点可对工艺系统进行全方面的监控,及时了解到处理系统运行的优劣状态。

八、投资

本工程自控系统的预算费用约占污水处理厂总投资的5%左右。与其它污水处理厂相比,本工程的自控系统投资是中等偏下,性价比较高。

九、结语

该污水处理厂自控系统是根据工艺要求在确定的设计原则下进行设计,既保证污水处理系统的正常运行,又尽可能的降低了工程的造价投资,其设计过程和结果对其它污水处理工程的自控设计具有一定的借鉴意义。

附录三

上一篇
下一篇
返回顶部