连续梁混凝土裂缝防治
第一篇:连续梁混凝土裂缝防治
现浇混凝土梁裂缝的成因和防治
摘要:施工当中难免遇到裂缝的问题,一般人们首先想到的是结构问题,但也不全是这样。有时裂缝只是建筑表面的现象,它并不会影响结构的安全。本文主要介绍裂缝的产生及防治。
关键词:大体积混凝土裂缝
建筑裂缝分析
一、裂缝简述:施工当中难免遇到裂缝的问题,一般人们首先想到的是结构问题,但也不全是这样。有时裂缝只是建筑表面的现象,它并不会影响结构的安全。
二、裂缝的形成:
(一)墙体裂缝:
1、沉降裂缝:
由于地基的不均匀沉降,使砖砌墙体表面产生一些不同性质的裂缝。由于砖混结构一般性裂缝(除严重开裂外)不危及结构安全和使用,往往容易被人们忽视,致使这类裂缝屡次发生,形成隐患。当地震及其他荷载作用下,容易引起提前破坏,所以应采取有效措施减少和防止裂缝的产生。
1
1)现象:
a、斜裂缝一般发生在纵墙的两端,多数裂缝通过窗口的两个对角,裂缝向沉降较大的方向倾斜,并由下向上发展。由于横墙刚度较大(门窗洞口较少),一般不会产生较大的相对变形,所以很少出现这类裂缝。裂缝多在墙体下部,向上逐渐减少,宽度下大上小,常常在房屋建成后不久就出现,其数量及宽度随时间而逐渐发展。
b、窗间墙水平裂缝。一般在窗间墙的上下对角处成对出现,沉降大的一边裂缝在下,沉降小的一边裂缝在上。
c、竖向裂缝发生在纵墙中央的顶部和底层窗台处,裂缝上宽下窄。当纵墙顶层有钢筋混凝土圈梁时,顶层中央顶部竖向裂缝则较少。
2)原因分析:
a、斜裂缝主要发生在软弱土地基上,由于地基不均匀下沉,使墙体承受较大的剪切力,当结构刚度较差,施工质量和材料强度不能满足要求时,导致墙体开裂。
2
b、窗间墙水平裂缝产生的原因是在沉降单元上部受到阻力,使窗间墙受到较大的水平剪力,而发生上下位臵的水平裂缝。
c、房屋低层窗台下竖直裂缝,是由于窗间墙承受荷载后,窗台墙起反梁作用,特别是较宽大的窗口或窗间墙承受较大的集中荷载情况下,窗台墙因反向变形过大而开裂,由于冻胀作用而在窗台处发生裂缝。
3)预防措施:
a、合理设臵沉降缝。凡不同荷载(高差悬殊的房屋)、长度过大、平面形状较为复杂,同一建筑物地基处理方法不同和有部分地下室的房屋,都应从基础开始分成若干部分,设臵沉降缝,使其各自沉降,以减少或防止裂缝产生。沉降缝应有足够的宽度,操作中应防止浇筑圈梁时将断开处浇在一起,或砖头、砂浆等杂物落入缝内,以免房屋不能自由沉降而发生墙体拉裂现象。
b、加强上部结构的刚度,提高墙体抗剪强度。由于上部结构刚度较强,可以适当调整地基的不均匀下沉。所以应在基础顶面及各楼层门窗口上部设臵圈梁,减少浇水润湿、改
3
善砂浆各易性、提高砂浆饱满度和砖层间的粘结(提高灰缝的砂浆饱满度可以大大提高墙体的抗剪强度)。在施工临时时间断处尽量留臵斜槎。当留臵直槎时,应加拉接筋。
c、加强地基探槽工作。对于较复杂的地基,在基槽开挖后应进行普遍钎探,等探出的软弱部位进行加固处理后,方可进行基础施工。
d、宽大窗口下部应考虑设混凝土梁以适应窗台反梁作用的变形,防止窗台处产生竖直裂缝。为避免多层房屋底层窗台下出现裂缝,除了加强基础整体性外,也可以采取通长配筋的方法来加强。窗台部位也不宜使用过多的半砖砌筑。
4)治理方法:
对于墙体产生裂缝首先应作好观察工作,注意裂缝开展规律。对于非地震区一般性裂缝,如若干年后不再发展,则可以认为不影响结构安全使用,局部宽缝处,用砂浆堵抹即可。对于影响安全使用的结构裂缝,应进行加固处理。对于因墙体原材料强度不够而发生的裂缝,墙面可敷贴钢筋网片,并配臵穿墙壁拉筋加以固定,然后灌细石混凝土或分层抹水泥砂浆进行加固。墙体裂缝的加固方法,应结合裂缝性质和
4
严重程度,由设计部门提出。
2、温度裂缝:
1)现象:
a、八字缝出现在顶层纵墙的两端(一般在1-2个开间的范围内),严重时可发展至房屋1/3长度内,有时在横墙上也可能发生。裂缝宽度一般中间大,两端小,当外纵墙两端有窗时,裂缝沿窗口对角方向裂开。
b、水平裂缝。一般发生在平屋顶屋檐下或顶层圈梁2-3皮砖的灰缝位臵。裂缝一般沿外墙顶部断续分布,两端较中间严重,在转角处,纵、横墙水平还不够相交而形成包角裂缝。
2)原因分析:
a、八字裂缝一般发生在平屋顶房屋顶层纵墙面上,这种裂缝往往在夏季屋顶圈梁、挑檐混凝土浇筑后,而保温层未施工前,由于混凝土和砖砌体两种材料线胀系数不同,在较大温差情况下,纵墙因不能自由缩短而在两端产生八字斜裂。
5
无保温屋盖的房屋,经过冬、夏气温的变化也容易产生八字裂缝。
b、檐口下水平裂缝、包角裂缝以及在较长的多层房屋楼梯间处的竖直裂缝,产生的原因与上达原因相同。
3)预防措施:
a、合理安排屋面保温层施工。由于屋面结构施工完毕至作好保温层,中间有一段时间间隔,因此屋面施工应尽量避开高温季节。屋面挑檐可采取分块预制或留臵伸缩缝,以减少混凝土伸缩对墙体的影响。
4)治理方法:
与沉降裂缝治理相同。
3、其它裂缝:
1)现象:
a、在较长的多层房屋楼梯间处,楼梯休息平台与楼板邻
6
接部位发生的竖直裂缝。
b、大梁底部的墙体(窗间墙),产生局部竖直裂缝。
2)原因分析:
大梁下面墙局部竖直裂缝,主要由于未设梁垫或梁垫面积不足,砖墙局部承受荷载过大所引起的。此外,与砖和砂浆标号偏低、施工质量差也有关。
3)预防措施:
a、有大梁集中荷载作用于的窗间墙,应有一定的宽度,梁下较小的窗间墙,施工中应避免留脚手眼。
b、有些墙裂缝具有地区性特点,应同设计与施工部门,结合本地区气候、环境和结构形式、施工方法等,进行综合调查分析,然后采取措施,加以解决。
4)治理方法:
与沉降裂缝治理相同。
7
(二)混凝土裂缝:
对有些结构按其所处条件的不同,允许存在一定宽度的裂缝。但施工中仍尽可能采取有效的技术措施控制裂缝,使结构尽量不出现裂缝,或尽量减少裂缝的数量和宽度,特别是避免有害裂缝的出现,以确保工程质量。
裂缝按产生的原因有:由外荷载(包括施工和使用阶段的静荷载、动荷载)引起的裂缝;由变形(包括温度、湿度变形、不均匀沉降等)引起的裂缝;由施工操作(如制作、脱模、养护、堆放、运输、吊装等)引起的裂缝。
按裂缝的方向、形状有:水平裂缝,垂直裂缝,横向裂缝,纵向裂缝,斜向裂缝以及放射状裂缝等。按裂缝深度有:贯穿裂缝、深层裂缝及表面裂缝三种。
1、塑性裂缝:
1)现象:
裂缝在结构表面出现,形状很不规则且长短不一,互不
8
连贯,类似干燥的泥浆面。大多在混凝土浇筑初期(一般在浇筑后4小时左右),当混凝土本身与外界气温相差悬殊,或本身温度长时间过高(40℃以上),而气候很干燥的情况下出现。塑性裂缝又称龟裂,属于干缩裂缝,出现普遍。
2)原因分析:
a、混凝土浇筑后,表面没有及时覆盖,受风吹日晒,表面游离水分蒸发过快,产生急剧的体积收缩,而此时混凝土早期强度很低,不能抵抗这种变形应力而导致开裂。
b、使用收缩率较大的水泥,水泥用量过多,或使用过量的粉砂。
c、混凝土水灰比过大,模板过于干燥。
3)预防措施:
a、配制混凝土时,应严格控制水灰比和水泥用量,选择级配良好的石子,减小空隙率和砂率;同时,要振捣密实,以减少收缩量,提高混凝土抗裂度。
9
b、浇筑混凝土前,将基层和模板浇水湿润。
c、混凝土浇筑后,对裸露表面应及时用潮湿材料覆盖,认真养护。
d、在气温高、湿度低或风速大的天气施工,混凝土浇筑后,应及早进行喷水养护,使其保持湿润;大面积混凝土宜浇完一段,养护一段。此外,要加强表面的抹压和养护工作。
e、混凝土养护可采用表面喷氯偏乳液养护剂,或覆盖湿草袋、塑料布等方法;当表面发现微细裂缝时,应及时抹压,再覆盖养护。
f、设挡风设施。
4)治理方法:
a、此类裂缝对结构强度影响不大,但传统使钢筋锈蚀,可在表面抹一层薄砂浆进行处理。对于预制构件,可在裂缝表面涂环氧胶泥或粘贴环氧玻璃布进行封闭处理。
2、干缩裂缝:
10
1)现象:
裂缝为表面性,宽度较细。其走向纵横交错,没有规律。较薄的梁、板类构件(或桁架杆件),多沿短向分布;整体性结构多发生在结构变截面处;平面裂缝多延伸到变截面部位或块体边缘,大体积混凝土在平面部位较为多见,但侧面也常出现,并随湿度和温度变化而逐渐发展。
2)原因分析:
a、混凝土成型后,养护不当,受到风吹日晒,表面水分散失快,体积收缩大,而内部湿度变化很小,收缩也小,因而表面收缩变形受到内部混凝土的约束,出现拉应力,引起混凝土表面开裂,或者构件水分蒸发,产生体积收缩受到地基或垫层的约束,而出现干缩裂缝。
b、混凝土构件长期露天堆放,表面湿度经常发生剧烈变化。
c、采用含泥量大的粉砂配制混凝土。
11
d、混凝土经过度振捣,表面形成水泥含量较多的砂浆层。
e、后张法预应力构件露天生产后长久为张拉等。
3)预防措施:
a、混凝土水泥用量、水灰比和砂率不能过大;严格控制砂石含泥量,避免使用过量粉砂;混凝土应振捣密实,并注意对板面进行抹压,可在混凝土初凝后、终凝前进行二次抹压,以提高混凝土抗拉强度,减少收缩量。
b、加强混凝土早期养护,并适当延长养护时间。长期露天堆放的预制构件,可覆盖草帘、草袋,避免曝晒,并定期适当洒水,保持湿润。薄壁构件则应在阴凉地方堆放并覆盖,避免发生过大湿度变化。
3、干缩裂缝:
1)现象:
表面温度裂缝走向无一定规律性;梁板式或长度尺寸较大的结构,裂缝多平行于短边;大面积结构裂缝常纵横交错。
12
深进的和贯穿的温度裂缝,一般与短边方向平行或接近于平行,裂缝沿全长分段出现,中间较密。裂缝宽度大小不一,一般在0.5mm以下。裂缝宽度沿全长没有太大的变化。温度裂缝多发生在施工期间,缝宽受温度变化影响较明显,冬季较宽,夏季较细。沿断面高度,裂缝大多呈上宽下窗状,但个别也有下宽上窄情况,遇上下边缘区配筋较多的结构,在时也出现中间宽两端窄的梭形裂缝。
2)原因分析:
a、表面温度裂缝,多由于温度较大。混凝土结构,特别是大体积混凝土基础浇筑后,在硬化期间放出大量水化热,内部温度不断上升,使混凝土表面和内部温差很大。当温度产生非均匀的降温时(如施工中注意不够,过早拆除模板;冬季施工,过早除掉保温层,或受到寒潮袭击),将导致混凝土表面急剧的温度变化而产生较大的降温收缩,此时表面胺到内部混凝土的约束,将产生很大的拉应力(内部降温慢,受自约束而产生压应力),而混凝土早期抗拉强度和弹性模量很低,因而出现裂缝(这种裂缝又称为内约束裂缝)。但这种温差仅在表面处较大,离开表面就很快减弱。因此,裂缝只在接近表面较浅的范围出现,表面层以下结构仍保持完整。
13
b、深进的和贯穿的浊裂缝多由于结构降温差较大,受到外界的约束而引起的。当大体积混凝土基础、墙体浇灌在坚硬地基(特别是岩石地基)或厚大的老混凝土垫层上时,没有采取隔离层等放松约束的措施,如果混凝土浇灌时温度很高,加上水泥水化热的混凝土冷却收缩,全部或部分地受到地基、混凝土垫层或其他外部结构的约束,将传统在混凝土浇筑后2-3个月或更长时间出现,裂缝较深,有时是贯穿性的,将破坏结构的整体性。基础工程长期不回填,受风吹日晒或寒潮袭击作用;框架结构的梁、墙板、基础梁,由于与刚度较大的柱、基础连接,或预制构件浇筑在台座伸缩缝处,因温度变形受到约束,降温时也常出现这类裂缝。采用蒸气养护的预制构件,混凝土降温制度控制不严,降温过速,或养生窑坑急剧揭盖,使混凝土表面剧烈降温,而受到肋部或胎模的约束,常导致构件表面或肋部出现裂缝。
3)预防措施:
a、尽量选用低热或中热水泥(如矿渣水泥、粉煤灰水泥)配制混凝土;或混凝土中掺适量粉煤灰;或利用混凝土的后期强度,降低水泥用量,以减少水化热量。
b、选用良好级配的骨料,并严格控制砂、石子含泥量,
14
降低水灰比,加强振捣,以提高混凝土的密实性和抗拉强度。
c、在混凝土中掺加缓凝剂,减缓浇筑速度,以利于散热,或掺木钙、减水剂,以改善和易性,减少水泥用量。
d、避开炎热天气浇筑大体积混凝土;必须在热天浇筑时,可采用冰水或深井凉水拌制混凝土,或设臵简易遮阳装臵,并对骨料进行喷水预冷却,以降低混凝土搅拌和浇筑的温度。
e、分层浇筑混凝土,每层厚度不大于30厘米,以加快热量散发,并使温度分布均匀,同时也便于振捣密实。
f、大体积混凝土适当预留一些孔道,采取通冷水或冷气降温。
g、大型设备基础采取分块分层间隔浇筑(间隔时间5~7天)分块厚度1~1.5m,以利水化热散发和减少约束作用;或每隔20~30m留一条0.5~1.0m宽的临时间断缝,40天后再用干硬性细石混凝土浇筑,以减少温度收缩应力。
h、浇筑混凝土后,表面应及时用草袋、锯末、砂等覆盖,并洒水养生。深搞基础可采取灌水养护(或在混凝土表面四
15
周砌一皮砖进行灌水养护。
)。夏季应适当延长养护时间,使之缓慢降温。在寒冷季节,混凝土表面应采取保温措施,以防寒潮袭击。拆模时,块体中部和表面温差不宜大于20℃,以防止急剧冷却造成表面裂缝。基础混凝土拆模后要及时回填。
i、在岩石地基或较厚大的混凝土垫层上浇筑大体积混凝土时,可在岩石地基或混凝土垫层上浇沥青胶并撒铺5mm厚或铺二层沥青油毡纸,以消除或减少约束作用。
j、蒸汽养护构件时,控制升温速度不大于25℃/小时,降温速度不大于20℃/小时,并缓慢揭盖,及时脱模,避免引起过大的温度应力。
4)治理方法:
a、温度裂缝对钢筋锈蚀、碳化、抗冻融(有抗冻要求的结构)、抗疲劳(对受动荷载构件)等方面有影响,故应采取措施治理。可以采用涂两遍环氧胶泥或贴环氧玻璃布,以及抹、喷水泥砂浆等方法进行表面封闭处理,对有防水、抗渗要求的结构,缝宽大于0.1mm的深进或贯穿性裂缝,应根据
16
裂缝可灌程度,采用灌水泥浆或化学浆液(环氧、甲凝或丙凝浆液)方法进行裂缝修补,或者灌浆与表面封闭同进采用。宽度不大于0.1mm的裂缝,由于后期水泥生成氢氧化钙、硫酸铝钙等类物质,能使裂缝自行愈合,可不处理或只进行表面处理即可。
4、不均匀沉陷裂缝:
1)现象:
不均匀沉陷裂缝多属贯穿性裂缝,其走向与沉陷情况有关,有的在上部,有的在下部,一般与地面垂直或呈30°~45°角方向发展。较大的不均匀沉陷裂缝,往往上下或左右有一定的差距,裂缝宽度受温度变化影响较小,因荷载大小而异,且与不均匀沉降值成比例。
2)原因分析:
a、结构、构件下面的地基未经夯实和必要的加固处理,混凝土浇筑后,地基因没水引起不均匀沉降。
b、平卧生产的预制构件(如屋架、梁等),由于侧向刚
17
度较差,在弦、腹杆件或梁的侧面常出现裂缝。
c、模板刚度不足,模板支撑间距过大或支撑底部松动,以及过早拆模,也常导致不均匀沉陷裂缝出现。
3)预防措施:
a、对松软土、填土地基应进行必要的夯实和加固。
b、避免直接在松软土或填土上制作预制构件,或经压夯实处理后作预制场地。
c、模板应支撑牢固,保证有足够强度和刚度,并使地基受力均匀。拆模时间不能达早,应按规定执行。
d、构件制作场地周围应作好排水措施,并注意防止水管漏水或养护水浸泡地基。
4)治理方法:
不均匀沉陷裂缝对结构的承载能力和整体性有较大的影响,因此,应根据裂缝的严重程度,会同设计等有关部门对
18
结构进行适当的加固处理(如设钢筋混凝土围套、加钢套箍等)。
第二篇:探讨连续刚构桥梁 顶板出现纵向贯通裂缝的原因
1. 工程实例
某三跨连续刚构桥在施工过程中,在箱梁内部中间位置出现纵向的贯通裂缝。该桥跨径组成为50+90+50m,桥面宽度为9m。该桥为变截面箱梁,箱梁根部高5.6m,端部高2.3m,其间按1.8次抛物线变化。箱梁顶板厚度为26cm。桥型总体布置图如图1所示。
图1.桥型总体布置图(单位:cm)
在中跨合拢张拉第一组预应力束后,在箱梁内部顶板中间位置出现纵向的贯通裂缝, 原因分析:
1、 横向没有预应力束,造成混凝土中没有储存足够的预压应力;
2、 在施工的过程中,对于预应力束的张拉没有严格按照施工规范对称张拉,造成箱梁发生畸变,从而产生横向拉应力。和在混凝土自重作用下横向弯曲产生的拉应力叠加,致使箱梁内部顶板拉应力过大,超过了混凝土的抗拉极限强度,从而造成了纵向贯通裂缝。
3、 该地位于高寒地区,温差变化比较大,在顶板上缘温度降低时,上缘混凝土收缩导致顶板下部出现拉应力,而横向混凝土没有足够的预压应力储备,从而诱发了在顶部下缘中间位置出现了通长的纵向裂缝。 预防措施:
1、 对于变截面箱梁结构应采取三向预应力系统,明确横向预应力的作用。
2、 对于出现问题桥梁,由于桥面宽度过窄,从而导致其抗扭刚度过小,在超静定约束下容易发生畸变,从而在顶板产生横向拉应力。
3、 建议对于窄桥适当加横隔板,提高其抗扭刚度,防止其在施工过程中发生畸变。
4、 本身三向预应力系统可以提高混凝土的强度。
5、 在施工过程中,对于预应力束的张拉应严格按照施工规范对称张拉,特别是在体系转化后,即中跨合拢后,张拉中跨底板预应力束时。因为体系转化后,体系为超静定结构,从而导致不对称张拉时偏载的影响,箱梁截面发生畸变,产生较大的次内力,最后导致桥梁结构的受力不利。 结论:对于变截面箱梁结构,在设计过程中应重视横向预应力的重要性,该桥笔者认为是在没有横向预应力的情况下,在其他因素(如:温度应力、不对称张拉、桥面抗扭刚度不够)的诱发下,在桥梁结构受力薄弱部位发生了裂缝。
第三篇:预应力混凝土连续箱梁桥裂缝控制
[ 录入者:zxl1921 | 时间:2006-07-18 12:35:08 | 作者:彭 卫, 施 颖, 张新军 | 来源:混
凝
土 ] [上一篇] [下一篇] 近年来,大跨径预应力混凝土连续箱梁桥在施工过程或使 用阶段,普遍出现各种不同性质的裂缝问题。典型裂缝是在边 跨现浇段和支座附近以及跨中腹板斜裂缝。本文结合裂缝观 测、有限元分析与理论研究,从裂缝成因分析和防治措施上探 讨了大跨径预应力混凝土连续箱梁桥的裂缝控制问题。 观测到的两座开裂桥梁为桥一和桥二。桥一为56m + 80m + 56m三跨变截面单箱双室连续箱梁桥,支点箱高5m,跨中箱高 214m,桥宽16125m,设计三车道,设计荷载为汽—超20 ,挂—120 ; 桥二为52m+ 3 ×80m+ 52m五跨变截面单箱单室连续箱梁桥,桥 宽16m,设计四车道,设计荷载为汽—20 ,挂—100。 两座桥的裂缝基本相似。桥一是在运营一段时间之后出 现裂缝,而桥二在竣工质量验收时就发现桥梁主跨箱粱的部分 腹板上出现了较多的裂缝,主要分布在跨中箱梁腹板以及在与 边跨桥墩相接的现浇段箱梁腹板上,裂缝分布在上下游的两侧 基本对称,与桥纵轴线成45°左右方向。从裂缝分布与方向来 看,这些裂缝属于结构性裂缝,是由于主跨箱梁承受了较大剪 应力,因而在腹板上出现了斜裂缝。 1 设计计算 111 分析方法
平面有限元分析只适宜于结构初步设计以及无横向偏载 作用下施工阶段的计算,使用阶段结构验算应按空间有限元分 析。在作平面分析时,要将箱梁的空间受力合理而不漏项地简 化到平面计算中。表1 列出了桥一各控制断面在最不利荷载 组合下的第一主应力。可以看出,平面分析下第一主应力均为 较小的压应力,而空间分析结果均为拉应力,且有4 个断面拉 应力数值较大,超出规范规定值。
表1 平面分析与空间分析第一主应力MPa 断面位置平面分析空间分析 距15 号墩415m1. 52 3 5. 61 边跨跨中L1/ 21. 04 0. 50 距16 号墩左4m1. 29 0. 48 距16 号墩右L2/ 41. 32 3 5. 88
注:表中数字负值为压应力,正值为拉应力,加3 者为超出规定值。 112 预应力束的布置
腹板斜裂缝是预应力混凝土连续箱梁常见裂缝形式,是结 构性裂缝,受腹板纵向预应力筋布置方式和竖向预应力大小的 影响。为了深入探讨这两个因素的影响程度,下面列出桥一在 不同预应力条件下的空间有限元计算结果。共分三种预应力 情况进行计算。表2 列出边跨现浇段腹板的剪应力与主拉应 力。荷载组合为:一恒+ 二恒+ 支座沉降+ 顶底板温差10 ℃ + 汽—超20 。三种预应力情况如下: 预应力1 : 腹板纵向预应力按弯筋布置,竖向预应力按 50 %张拉力考虑; 预应力2 :腹板纵向预应力按直线束布置,竖向预应力按 50 %张拉力考虑; 预应力3 :腹板纵向预应力按直线束布置,不考虑竖向预 应力作用。
从计算结果可以看出: (1) 竖向预应力大小对腹板剪应力没有影响。中间支座负弯 矩区段预应力筋布置方式(直线束或弯起束)对剪应力影响也不大。 (2) 中间支座负弯矩预应力筋布置方式对该预应力筋作用 范围内的腹板主拉应力影响很大。但布束方式对边墩现浇段 腹板主拉应力影响不大。
(3) 竖向预应力大小对全桥范围内腹板主拉应力均有影 响。不计竖向预应力作用与计入50 %设计张拉控制力相比, 腹板主拉应力一般增大一倍左右。表中第6 栏主拉应力均超 出规范规定值217MPa ,而第4 栏的数据在规定值之内。 表2 边跨现浇段腹板在不同预应力条件下的 剪应力与主拉应力MPa 计算点 预应力1 (1)τyz (2) S1 预应力2 (3)τyz (4) S1 预应力3 (5)τyz (6) S1 (6)5. 19 2. 205. 11 1. 795. 02 1. 154. 63 1. 384. 27 1. 423. 92 1. 8299 公路规范J TJ02385 美国规范(94) 预加力阶段16. 0 21. 0 22. 0 运营阶段20. 0 17. 5 22. 5 114 温度梯度模式
我国公路桥梁规范J TJ02361. [3 ]公路钢筋混凝土及预应力混凝土桥涵设计规范(J TJ023 - 85) . 北 京:人民交通出版社,1985. [4 ]辛济平,劳远昌. 国公路桥梁设计规范—与抗力系数法[M] . 北京: 人民交通出版社,1998. [ 5 ]丁大钧. 钢筋混凝土结构学[M] . 上海:上海科学技术文献出版社, 1985. [ 6 ]袁国干. 配筋混凝上结构设计原理[ M] . 上海: 同济大学出版社, 1990.
第四篇:高铁施工预应力混凝土连续梁质量控制研究论文
摘要:
在最近的几年,人们对于高铁各方面的要求在不断提高,如舒适性以及安全性等方面,然而传统的桥梁已经没有办法满足现阶段铁路的需要。要想能够不断满足高铁对于人们的需要,就必须要全面提高高铁桥梁结构的强度。当今在我国铁路交通事业全面发展的同时,预应力混凝土连续梁的应用已经越来越频繁。现阶段,预应力混凝土的连续施工方法较多。在施工的过程中,质量控制也是一个十分重要的内容。为了能够全面提高施工的质量以及安全,必须要对其采取有效的质量控制措施。
关键词:
高铁施工;预应力;连续梁;质量
当今在我国交通事业发展的同时,促进了高铁桥梁工程的整体施工,在对其预应力混凝土连续梁进行施工的过程中,其质量将会直接的关系到桥梁的整体运行情况。因此在对其高铁施工中,其预应力混凝土连续梁的控制具有着巨大的作用。在本文中主要是针对了我国的高铁施工过程中的预应力混凝土连续梁施工的质量作出了全面的控制,并且在这个基础之上提出了下文中的一些内容,希望能够给与同行业人员提供参考。
一、关于连续桥梁的施工控制分析
针对连续桥梁来说,因为其存在着的重要性以及特殊性受到了人们广泛的关注,在施工的过程中质量控制对于工程的整体具有着十分重要的作用。针对连续桥梁的施工,质量控制工作主要是在施工中严格根据设计标准对各项参数做好检查,并且也需要将其桥梁工程的结构变形控制在一个合理的范围之内,从而保证工程的质量,提高桥梁工程的施工水平。一般情况,针对高铁预应力混凝土在进行连续梁施工中,其质量控制内容如下:一是结构内力方面的控制,在对其内力做出控制的时候,要能够保证内部得到合理的分布,同时在施工后需要对其主梁的应力做出全面的调查,尤其是要能够对其合拢的时间进行掌握,保证桥梁工程的安全系数以及完整性。二是变形控制,主要是在出现偏差以及箱梁做出分析,使其能够有针对性地调整,保证桥梁工程的质量,与此同时也能够为后期的施工打下坚实的基础。其中,箱梁的变形也包括了竖向的挠度以及横向的偏移。
二、关于高铁施工过程中预应力混凝土的质量控制
1.关于施工材料的控制
材料质量控制是工程质量控制的前提,对此,可以从下述的几个方面进行入手分析:
(1)要对其混凝土的质量作出全面的控制。在进行浇筑的过程中,必须要能够保证混凝土均匀的下料,对其进行严格的监控。针对工程所应用的混凝土,其成分主要包括了水泥、粗细骨料、粉煤灰、外加剂等。然而针对水泥的选择,必须要根据施工的实际情况来进行选择适合的强度等级,如果强度过高或者是过低将会导致混凝土质量带来影响,过高将会导致混凝土耐久性受到影响,过低则会导致混凝土收缩性增加,与此同时针对水泥来说,应该要存储在室内,并且不可以直接的堆放到地面上,距离地面0.2m之上,堆放的高度不可以超过1.5m。
(2)对钢筋的质量进行控制,对工程的需要进行结合,根据国家的标准来选择不同类型的钢筋,针对进入到施工现场的钢筋,要对其做好抽样检测,以此来考核其质量是否能够满足需要。此外,钢筋入库的时候应该要挂牌分类进行存储,应该要将其放置但干燥通风的位置,避免钢筋生锈。
(3)对张拉工艺进行严格地控制,同时需要根据设计的要求来进行下料以及编束处理,使其能够满足设计的要求,把钢绞线进行理顺,在编束的时候要能够保证每一根的钢绞线松紧一致。
(4)要对锚具进行控制,针对锚具的质量检测来说,必须要注意从符合设计的规定以及预应力张拉等情况进行控制。锚具的张拉强度不可以低于预应力钢筋抗拉强度的90%,这样才能够满足后期的施工条件。此外,锚具在进入到施工现场之前要查看是否生锈以及腐蚀,最大程度上保证锚具的强度,使其能够全面地对工程的质量进行掌握。
2.关于高铁预应力混凝土连续梁的施工工艺控制
针对以往的经验进行总结之后可以发现,在高铁施工中,施工工艺的掌控主要是存在着以下的几个方面当中。
(1)对模板安装做好全面控制的工作。对于模板工程的安装,为一项较为重要的内容,将会涉及到钢筋安装及预应力管道铺设的相关工作,与此同时也将会对其高铁施工质量带来直接的影响。因此在施工的中,要对模板的表面清洁程度进行检查,使其避免会出现凹凸等情况,如果存在必须要及时地进行修复,安装后需要做好尺寸的检测,保证满足工程的实际需要。同时在针对模板做出拆除的时候,要对混凝土芯部及表面的温度差进行检测,温差不宜过大。
(2)在施工中的质量全面控制,对于混凝土搅拌站来说,要对混凝土的存储量进行全面的提高,保证施工中混凝土能够达到连续的供应。在对混凝土进行浇筑的过程中,应该要避免在温度较高的时期,使其能够杜绝混凝土裂缝的问题出现。
3.关于温度方面的控制
温度对连续梁施工质量有直接的影响。温度变化,主要包括自然环境的温度以及混凝土自身的温度。自然环境的温度主要是大气温度及阳光直接照射。混凝土自身的温度主要是水化热,所以必须对水化热做出全面的控制。
(1)要选择低水化热水泥,在原材料上降低水热化,其水热化的作用主要是因为水泥在凝固过程中出现,导致热量不断地在混凝土当中进行存储,在较短的时间之内将会导致温度出现升高。
(2)在混凝土中掺入一定量粉煤灰,通过降低水泥用量来减少水化热,将温度进行控制在合理的范围之内。
(3)加强混凝土的养护,混凝土初凝后,采取表面覆盖保湿养护,减少混凝土内外温差。
三、结语
通过上述的内容分析之后可以知道,不管是混凝土连续梁的强度还是刚度,都和桥梁结构的安全性以及耐久性之间存在着十分密切的关系,在对高铁进行施工的过程中,必须遵照相关的规范,做好每一项的施工任务,与此同时也要保证每一个环节的施工质量控制,从而全面地提高我国高铁行业的长期稳定发展。
参考文献:
[1]王武.关于高铁施工中预应力混凝土连续梁质量控制的思考[J].中国建设信息,2011,12(24):159-163.
[2]蒋英杰.大跨度预应力混凝土连续梁桥的施工控制方法[D].成都:西南交通大学,2010.
[3]程宏.高铁施工中预应力混凝土连续梁质量控制探析[J].江西建材,2015,12(24):145-147.
[4]姜浩.悬臂浇筑大跨度预应力混凝土连续梁桥施工控制的研究[D].长春:吉林大学,2005.
第五篇:钢筋混凝土连续箱梁裂缝成因的分析及控制
丛培新
辽宁省路桥建设三公司
摘要:对钢筋混凝土连续箱梁裂缝的成因进行分析,并结合已有工程实践,提出了控制预防裂缝产生、发展的措施。
关键词:钢筋混凝土连续箱梁 裂缝 成因 控制预防措施
1、概述
在城市立交和现今高速公路设计中,为满足线型的需要,保证立交线型美观,桥梁结构常常设计为连续箱梁,当桥梁的跨度小于25m时,通常最经济的结构形式为钢筋混凝土结构。在工程实践中,常常会发生钢筋混凝土箱梁的裂缝超过限度的情况,本文就钢筋混凝土箱梁裂缝的成因及工程设计中采用的预防措施谈一些看法。
2、钢筋混凝土箱梁裂缝成因 2.1钢筋混凝土箱梁裂缝概念
混凝土最主要的缺点是抗拉能力差,容易开裂。理论上讲钢筋混凝土构件均是带裂缝工作的,只有混凝土受拉,钢筋才能受力,只是混凝土受拉裂缝很细,甚至肉眼看不见(<0.05mm)一般对结构的使用无大的危害,可允许其存在。《公路桥梁设计规范》(JTJ024-2000)对钢筋混凝土结构的裂缝宽度有明确的规定,在一般正常大气下不应超过0.25mm,处于严重暴露情况(有侵蚀性气体或海洋大气下)不应超过0.1mm。
钢筋混凝土结构裂缝宽度超过限定时,在使用荷载外界物理、化学因素的作用下,裂缝不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用。
2.2钢筋混凝土箱梁裂缝,按基产生的原因可分为以下几类:
(1)由荷载效应(如弯距、剪力、扭矩及拉力等)引起的裂缝;(2)由外加变形或约束引起的裂缝,主要包括地基不均匀沉降、混凝土的收缩、外界温度的变化;(3)钢筋锈蚀裂缝;(4)建材原因引起的裂缝;(5)施工原因引起的裂缝。
2.3钢筋混凝土箱梁裂缝的原因 2.3.1由荷载效应引起的裂缝
在设计中计算考虑不周,配筋不合理,结构尺寸不足,构造处理不当,刚度不足,施工阶段不按图纸施工,使用阶段超出设计荷载的重型车辆过桥等均可使箱梁产生受力裂缝。受力裂缝一般是与受力钢筋以一定角度相交的横向裂缝,以及由于局部粘结应力过大引起的,沿钢筋长度出现的粘结裂缝,这种裂缝通常是针角状及劈裂裂缝。
2.3.2地基基础变形引起的裂缝
对于全脚手架施工的钢筋混凝土连续箱梁,地基基础的变形为支架变形、支架地坪变形和桥墩基础竖向不均匀沉降,这些均可使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。
2.3.3温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变化,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其北裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:(1)年温差;(2)日照;(3)骤然降温;(4)水化热。
2.3.4收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩各类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自收缩和炭化收缩。
塑性收缩发生在施工过程中,混凝土浇筑后4~5h左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称塑性收缩。塑性收缩所产生量级很大,可达1%左右,在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减少混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面分层浇筑。
缩水收缩(干缩)。混凝土结硬以后,随着表层水份逐渐蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水份损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩。表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
自由收缩。自由收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只是在湿度50%左右才能发生,且随二氧化碳浓度的增加而加快,炭化收缩一般不做计算。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
2.3.5钢筋锈蚀引起的裂缝
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化物破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增大2倍到4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀结构破坏。
2.3.6施工材料质量引起的裂缝
混凝土主要由水泥、砂、碎石、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
2.3.7施工工艺质量引起的裂缝
在混凝土结构浇筑构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝。
3、控制钢筋混凝土连续箱梁裂缝的措施
在实际的施工中,可以在设计单位的参与和主持下,对混凝土连续箱梁可能出现裂缝的原因进行认真分析,采取了一些预先防止箱梁裂缝的措施,取得了很好的效果,现概括如下。
(1)对钢筋混凝土连续箱梁的受力裂缝采取以下措施:a.采用成熟的计算程序和计算方法,对影响裂缝的因素进行分析,在计算中可以考虑。b.在箱梁构造上采用构造措施,比如对支点附近腹板、底板适当加厚。c.在箱梁的腹板中布设1束-2束预应力钢绞线作为应力储备,其布置按吻合索布置。计算中不考虑,结构的计算分析理论采用钢筋混凝土结构。d.在箱梁可能开裂的部位预先配置钢筋,比如支点附近腹板与顶板连接部的翼缘板下缘等部位。e.采用全脚手架施工的钢筋混凝土连续梁,支点处为墩台支撑,其余部分为脚手架支撑,两者刚度相关较大,如果混凝土一次浇筑,在自重作用下支点部分变形大于其他部分,易使支点附近箱梁用腹板开裂,因此施工时混凝土宜分段浇筑,先浇筑中部分,后浇筑支点部分。
(2)对温度不均匀变化引起的裂缝,采取在箱梁腹板、底板上设置通气孔,减小箱梁内外温差,减小不均匀温差引起的裂缝。
(3)为防止混凝土的收缩裂缝,对箱梁的腹板外侧分布钢筋间距适当加密,同时采用较小的分布钢筋直径。
(4)地基基础变形引起的裂缝,采取以下措施:对脚手架地坪进行加固处理,支架搭设好后应进行预压,预压重等于箱梁恒载自重,同时对桥墩基础沉降量进行控制,以保证各墩台基础的沉降量在一定的范围,并且各墩台基础的沉降差不能超过限定值。
(5)为保证混凝土质量,必须严格控制砂石的含泥量。
(6)加强配合施工,及时进行施工交底,在施工现场配合设计单位优化施工工艺。 4 结束语
以上是本人在工作中的一些看法,若有不当之处,还望各位专家同仁们指正。