范文网 论文资料 初中数学全部几何定理(精选)

初中数学全部几何定理(精选)

初中数学全部几何定理第一篇:初中数学全部几何定理初中数学几何定理的教学策略论文:浅谈初中数学几何定理的教学策略浅谈初中数学几何定理的教学策略数学教师在教学上经常会遇到很多困难,特别在农村初中。其中比较突出的是有较多学生对几何定理的理解运用感。

初中数学全部几何定理

第一篇:初中数学全部几何定理

初中数学几何定理的教学策略论文:浅谈初中数学几何定理的教学策略

浅谈初中数学几何定理的教学策略

数学教师在教学上经常会遇到很多困难,特别在农村初中。其中比较突出的是有较多学生对几何定理的理解运用感到困难,思考时目的性不明确。本文针对这些情况,提出了以下教学方法供大家参考。

一、对几何定理概念的理解

我认为能正确书写证明过程的前提是学会对几何定理的书写,因为几何定理的符号语言是证明过程中的基本单位。因而在教学中我们采取了“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求。 

例如定理:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

一划:就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分。如:“直角三角形”和“高线”、“相似”。

二画:就是依据定理的内容,能画出所对应的基本图形。

三写:能用符号语言表达。如:∵△ABC是RT△,CD⊥AB于D(条件也可写成:∠ACB=90°,∠CDB=90°等) ∴△ACD∽△BCD∽△ABC 。

二、对几何定理的推理模式

从学生反馈的问题看,多数学生觉得几何抽象还在于几

何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤。怎样将形式多样的推理过程让学生看得清而又摸得着呢?为此经过归纳整理,总结了三种基本推理模式。

具体教学分三个步骤实施:

⑴精心设计三个简单的例题,让学生归纳出三种基本推理模式。

① 条件 → 结论 → 新结论 (结论推新结论式) ② 新结论 (多个结论推新结论式) ③ 新结论 (结论和条件推新结论式)

⑵通过已详细书写证明过程 的题目让学生识别不同的推理模式。

⑶通过具体习题,学生有意识、有预见性地练习书写。

这一环节我们的目的是让学生先理解证明题的大致框架,在具体书写时有一定的模式,有效地克服了学生书写的盲目性。

三、组合几何定理

基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。下面通过一例来

说明这一步骤的实施。

例:已知,四边形ABCD外接⊙O的半径为5,对角线 AC与 BD 相交于E,且 AB = AE·AC,BD= 8。求△BAD的面积。

证明:连结OB,连结OA交BD于F。

学生从每一个推测符号中找出所对应的定理和隐含的主要定理:

比例基本性质 →证相似 →相似三角形性质 →垂径定理 →勾股定理 →三角形面积公式

由于学生自己主动找定理,因而印象深刻。在证明过程中确实是由一个一个定理连结起来的,也让学生体会到把定理镶嵌在基本模式中,就能形成严密的推理过程。

四、联想几何定理

分析图形是证明的基础,几何问题给出的图形有时是某些基本图形的残缺形式,通过作辅助线构造出定理的基本图形,为运用定理解决问题创造条件。图形可以引发联想,对于识图或想象力较差的学生我们从另一侧面,即证明题的“已知、求证”上给学生以支招,即由命题的题设、结论联想某些定理,以配合图形想象。

例:⊙O1和⊙O2相交于B,C两点,AB是⊙O1 的直径,AB、AC的延长线分别交⊙O2于D、E,过B作⊙O1的切线交AE于F。求证:BF∥DE。

讨论此题时,启发学生由题设中的“AB是⊙O的直径”联想定理“直径所对的圆周角是90°”,因而连结BC;“过B作⊙O的切线交AE于F”联想定理“切线的性质”,得出∠ABF=90°。从而构造出基本图形。由命题的结论“BF∥DE”联想起“同位角相等,两直线平行”定理,学生就易于思考了。

第二篇:初中数学几何公式、定理汇编(二)

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

第三篇:新人教版初中数学几何定理汇总(八年级及以下)

初中数学几何定理汇总

一部分、线与角

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

二部分、三角形的边与角的性质和全等三角形的判定

15、定理 三角形两边的和大于第三边

16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于180°

18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等

24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

三部分、角平分线定理、特殊三角形的性质、推论和判定

27、定理1 在角的平分线上的点到这个角的两边的距离相等

- 1

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角 6

1、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 6

6、菱形面积=对角线乘积的一半,即S=(a×b)÷2 6

7、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半。

第四篇:高中数学联赛几何定理

梅涅劳斯定理

BFAECD1。 FAECBD

BFAECD1,逆定理:一直线截△ABC的三边BC,CA,AB或其延长线于D,E,F若FAECBD一直线截△ABC的三边BC,CA,AB或其延长线于D,E,F则

则D,E,F三点共线。

塞瓦定理

BDCEAF=1。 在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则

托勒密定理

ABCD为任意一个圆内接四边形,则ABCDADBCACBD。

逆定理:若四边形ABCD满足ABCDADBCACBD,则A、B、C、D四点共圆

西姆松定理

过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。

相关的结果有:

(1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。

(2)两点的西姆松线的交角等于该两点的圆周角。

(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

(4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 斯特瓦尔特定理

设已知△ABC及其底边上B、C两点间的一点D,则有AB·DC+AC·BD-AD·BC=BC·DC·BD。 22

2三角形旁心

1、旁切圆的圆心叫做三角形的旁心。

2、与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆。

费马点

在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

判定(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点。费马点的计算

(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

九点圆:三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆。通常称这个圆为九点圆(nine-point circle),

欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。

几何不等式

1托勒密不等式:任意凸四边形

ABCD四点共圆时取等号。 ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当

2埃尔多斯—莫德尔不等式:设P是ΔABC内任意一点,P到ΔABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z。则 x+y+z≥2(p+q+r)3外森比克不等式:设△ABC的三边长为a、b、c,面积为S,则a2+b2+c2≥4S 4欧拉不等式:设△ABC外接圆与内切圆的半径分别为R、r,则R≥2r,当且仅当△ABC为正三角形时取等号。

圆幂

假设平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂;可见圆外的点对圆的幂为正,圆内为负,圆上为0;

根轴

1在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。

2另一角度也可以称两不同心圆的等幂点的轨迹为根轴。

相关定理

1,平面上任意两圆的根轴垂直于它们的连心线;

2,若两圆相交,则两圆的根轴为公共弦所在的直线;

3,若两圆相切,则两圆的根轴为它们的内公切线;

4,蒙日定理(根心定理):平面上任意三个圆心不共线的圆,它们两两的根轴或者互相平行,或者交于一点,这一点叫做它们的根心;

第五篇:数学初二 几何定理总结(推荐)

几何公式和定理(初2) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行

10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

上一篇
下一篇
返回顶部