高中数学常用结论集锦
第一篇:高中数学常用结论集锦
高中数学常用公式及常用结论大全
高中数学常用公式及常用结论 1.元素与集合的关系 ,.2.德摩根公式 .3.包含关系 6 4.容斥原理 . 5.集合的子集个数共有 个;
真子集有–1个;
非空子集有 –1个;
非空的真子集有–2个.6.二次函数的解析式的三种形式 (1)一般式; (2)顶点式; (3)零点式.7.解连不等式常有以下转化形式 .8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:
(1)当a>0时,若,则;
,,.(2)当a<0时,若,则,若,则,. 10.一元二次方程的实根分布 依据:若,则方程在区间内至少有一个实根 . 设,则 (1)方程在区间内有根的充要条件为或;
(2)方程在区间内有根的充要条件为或或或;
(3)方程在区间内有根的充要条件为或 .11.定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有()个 小于 不小于 至多有个 至少有()个 对所有, 成立 存在某, 不成立 或 且 对任何, 不成立 存在某, 成立 且 或 14.四种命题的相互关系 原命题 互逆 逆命题 若p则q 若q则p 互 互 互为 为互 否 否 逆 逆 否 否 否命题 逆否命题 若非p则非q互逆若非q则非p 15.充要条件 (1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;
反之亦然.16.函数的单调性 (1)设那么 上是增函数;
上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;
如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.18.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;
如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 19.若函数是偶函数,则;
若函数是偶函数,则.20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.21.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.22.多项式函数的奇偶性 多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性 (1)函数的图象关于直线对称 .(2)函数的图象关于直线对称 .24.两个函数图象的对称性 (1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;
若将曲线的图象右移、上移个单位,得到曲线的图象.26.互为反函数的两个函数的关系 .27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.28.几个常见的函数方程 (1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,, . 29.几个函数方程的周期(约定a>0) (1),则的周期T=a;
(2), 或, 或, 或,则的周期T=2a;
(3),则的周期T=3a;
(4)且,则的周期T=4a;
(5) ,则的周期T=5a;
(6),则的周期T=6a.30.分数指数幂 (1)(,且).(2)(,且).31.根式的性质 (1).(2)当为奇数时,;
当为偶数时,.32.有理指数幂的运算性质 (1) .(2) .(3).注:
若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 .34.对数的换底公式 (,且,,且, ).推论 (,且,,且,, ).35.对数的四则运算法则 若a>0,a≠1,M>0,N>0,则 (1); (2) ; (3).36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.37.对数换底不等式及其推广 若,,,,则函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,,,且,则 (1).(2).38.平均增长率的问题 如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系 ( 数列的前n项的和为).40.等差数列的通项公式 ;
其前n项和公式为 .41.等比数列的通项公式 ;
其前n项的和公式为 或.42.等比差数列:的通项公式为 ;
其前n项和公式为 .43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).44.常见三角不等式 (1)若,则.(2) 若,则.(3) .45.同角三角函数的基本关系式 ,=,.46.正弦、余弦的诱导公式(奇变偶不变,符号看象限) (n为偶数) (n为奇数) (n为偶数) (n为奇数) 47.和角与差角公式 ; ; .(平方正弦公式); .=(辅助角所在象限由点的象限决定, ).48.二倍角公式 ...49.三倍角公式 ...50.三角函数的周期公式 函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;
函数,(A,ω,为常数,且A≠0,ω>0)的周期.51.正弦定理 .52.余弦定理 ; ; .53.面积定理 (1)(分别表示a、b、c边上的高).(2).(3).54.三角形内角和定理 在△ABC中,有 .55.简单的三角方程的通解 . ..特别地,有 . ..56.最简单的三角不等式及其解集 .. . . ..57.实数与向量的积的运算律 设λ、μ为实数,那么 (1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb.58.向量的数量积的运算律:
(1) a·b= b·a (交换律); (2)(a)·b= (a·b)=a·b= a·(b); (3)(a+b)·c= a ·c +b·c.59.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2. 不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示 设a=,b=,且b0,则ab(b0).53.a与b的数量积(或内积) a·b=|a||b|cosθ. 61.a·b的几何意义 数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 62.平面向量的坐标运算 (1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则a·b=.63.两向量的夹角公式 (a=,b=).64.平面两点间的距离公式 = (A,B).65.向量的平行与垂直 设a=,b=,且b0,则 A||bb=λa .ab(a0)a·b=0.66.线段的定比分公式 设,,是线段的分点,是实数,且,则 ().67.三角形的重心坐标公式 △ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.68.点的平移公式 .注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的几个结论 (1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.70.三角形五“心”向量形式的充要条件 设为所在平面上一点,角所对边长分别为,则 (1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.(5)为的的旁心.71.常用不等式:
(1)(当且仅当a=b时取“=”号). (2)(当且仅当a=b时取“=”号). (3) (4)柯西不等式 (5).72.极值定理 已知都是正数,则有 (1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.推广 已知,则有 (1)若积是定值,则当最大时,最大;
当最小时,最小.(2)若和是定值,则当最大时, 最小;
当最小时, 最大.73.一元二次不等式,如果与同号,则其解集在两根之外;
如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;
.74.含有绝对值的不等式 当a> 0时,有 .或.75.无理不等式 (1) .(2).(3).76.指数不等式与对数不等式 (1)当时, ; .(2)当时, ; 77.斜率公式 (、).78.直线的五种方程 (1)点斜式 (直线过点,且斜率为). (2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、()).(4)截距式 (分别为直线的横、纵截距,) (5)一般式 (其中A、B不同时为0).79.两条直线的平行和垂直 (1)若, ①; ②.(2)若,,且A1、A2、B1、B2都不为零, ①;
②;
80.夹角公式 (1).(,,) (2).(,,).直线时,直线l1与l2的夹角是.81.到的角公式 (1).(,,) (2).(,,).直线时,直线l1到l2的角是.82.四种常用直线系方程 (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数. (2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数. (3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量. (4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量. 83.点到直线的距离 (点,直线:).84.或所表示的平面区域 设直线,则或所表示的平面区域是:
若,当与同号时,表示直线的上方的区域;
当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;
当与异号时,表示直线的左方的区域.简言之,同号在右,异号在左.85.或所表示的平面区域 设曲线(),则 或所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分. 86.圆的四种方程 (1)圆的标准方程 .(2)圆的一般方程 (>0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的端点是、).87.圆系方程 (1)过点,的圆系方程是 ,其中是直线的方程,λ是待定的系数. (2)过直线:与圆:的交点的圆系方程是,λ是待定的系数. (3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数. 88.点与圆的位置关系 点与圆的位置关系有三种 若,则 点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系 直线与圆的位置关系有三种: ; ; .其中.90.两圆位置关系的判定方法 设两圆圆心分别为O1,O2,半径分别为r1,r2, ; ; ; ; .91.圆的切线方程 (1)已知圆. ①若已知切点在圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. ③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线. (2)已知圆. ①过圆上的点的切线方程为; ②斜率为的圆的切线方程为.92.椭圆的参数方程是.93.椭圆焦半径公式 ,.94.椭圆的的内外部 (1)点在椭圆的内部.(2)点在椭圆的外部.95.椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是 . (3)椭圆与直线相切的条件是.96.双曲线的焦半径公式 ,.97.双曲线的内外部 (1)点在双曲线的内部.(2)点在双曲线的外部.98.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).99.双曲线的切线方程 (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是 . (3)双曲线与直线相切的条件是.100.抛物线的焦半径公式 抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或 P,其中 .102.二次函数的图象是抛物线:(1)顶点坐标为;
(2)焦点的坐标为;
(3)准线方程是.103.抛物线的内外部 (1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.104.抛物线的切线方程 (1)抛物线上一点处的切线方程是. (2)过抛物线外一点所引两条切线的切点弦方程是. (3)抛物线与直线相切的条件是.105.两个常见的曲线系方程 (1)过曲线,的交点的曲线系方程是 (为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 或 (弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). 107.圆锥曲线的两类对称问题 (1)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是 .108.“四线”一方程 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程 ,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;
(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点;
(2)转化为线面平行;
(3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直;
(2)转化为线面垂直;
(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.113.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角;
(2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)数乘分配律:λ(a+b)=λa+λb. 116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理 对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb. 三点共线.、共线且不共线且不共线.118.共面向量定理 向量p与两个不共线的向量a、b共面的存在实数对,使. 推论 空间一点P位于平面MAB内的存在有序实数对,使, 或对空间任一定点O,有序实数对,使.119.对空间任一点和不共线的三点A、B、C,满足(),则当时,对于空间任一点,总有P、A、B、C四点共面;
当时,若平面ABC,则P、A、B、C四点共面;
若平面ABC,则P、A、B、C四点不共面. 四点共面与、共面 (平面ABC).120.空间向量基本定理 如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc. 推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使.121.射影公式 已知向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,则 〈a,e〉=a·e 122.向量的直角坐标运算 设a=,b=则 (1)a+b=;
(2)a-b=;
(3)λa= (λ∈R);
(4)a·b=;
123.设A,B,则 = .124.空间的线线平行或垂直 设,,则 ;
.125.夹角公式 设a=,b=,则 cos〈a,b〉=.推论 ,此即三维柯西不等式.126.四面体的对棱所成的角 四面体中, 与所成的角为,则 .127.异面直线所成角 = (其中()为异面直线所成角,分别表示异面直线的方向向量) 128.直线与平面所成角 (为平面的法向量).129.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则 .特别地,当时,有 .130.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则 .特别地,当时,有 .131.二面角的平面角 或(,为平面,的法向量).132.三余弦定理 设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.133.三射线定理 若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,则有 ; (当且仅当时等号成立).134.空间两点间的距离公式 若A,B,则 =.135.点到直线距离 (点在直线上,直线的方向向量a=,向量b=).136.异面直线间的距离 (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).137.点到平面的距离 (为平面的法向量,是经过面的一条斜线,).138.异面直线上两点距离公式 ..(). (两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,). 139.三个向量和的平方公式 140.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有 .(立体几何中长方体对角线长的公式是其特例).141.面积射影定理 .(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).142.斜棱柱的直截面 已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则 ①.②.143.作截面的依据 三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.144.棱锥的平行截面的性质 如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);
相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 145.欧拉定理(欧拉公式) (简单多面体的顶点数V、棱数E和面数F).(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;
(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.146.球的半径是R,则 其体积, 其表面积. 147.球的组合体 (1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体: 正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为的正四面体的内切球的半径为,外接球的半径为.148.柱体、锥体的体积 (是柱体的底面积、是柱体的高).(是锥体的底面积、是锥体的高).149.分类计数原理(加法原理) .150.分步计数原理(乘法原理) .151.排列数公式 ==.(,∈N*,且). 注:规定.152.排列恒等式 (1); (2); (3); (4); (5).(6) .153.组合数公式 ===(∈N*,,且).154.组合数的两个性质 (1)= ; (2) +=.注:规定. 155.组合恒等式 (1); (2); (3); (4)=; (5).(6).(7). (8).(9).(10).156.排列数与组合数的关系 .157.单条件排列 以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位” ①某(特)元必在某位有种;
②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻) ①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;
③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空 个大球个小球排成一列,小球必分开,问有多少种排法? 当时,无解;
当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.158.分配问题 (1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有 .(3)(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配方法数共有.(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有 .(5)(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,则其分配方法数有.(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有.(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,则无论,,…,等个数是否全相异或不全相异其分配方法数恒有 .159.“错位问题”及其推广 贝努利装错笺问题:信封信与个信封全部错位的组合数为 .推广: 个元素与个位置,其中至少有个元素错位的不同组合总数为 .160.不定方程的解的个数 (1)方程()的正整数解有个.(2) 方程()的非负整数解有 个.(3) 方程()满足条件(,)的非负整数解有个.(4) 方程()满足条件(,)的正整数解有个.161.二项式定理 ; 二项展开式的通项公式 .162.等可能性事件的概率 .163.互斥事件A,B分别发生的概率的和 P(A+B)=P(A)+P(B). 164.个互斥事件分别发生的概率的和 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An). 165.独立事件A,B同时发生的概率 P(A·B)= P(A)·P(B).166.n个独立事件同时发生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An). 167.n次独立重复试验中某事件恰好发生k次的概率 168.离散型随机变量的分布列的两个性质 (1); (2).169.数学期望 170.数学期望的性质 (1).(2)若~,则.(3) 若服从几何分布,且,则.171.方差 172.标准差 =.173.方差的性质 (1);
(2)若~,则.(3) 若服从几何分布,且,则.174.方差与期望的关系 .175.正态分布密度函数 ,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.176.标准正态分布密度函数 .177.对于,取值小于x的概率 . .178.回归直线方程 ,其中.179.相关系数 .|r|≤1,且|r|越接近于1,相关程度越大;
|r|越接近于0,相关程度越小.180.特殊数列的极限 (1).(2).(3)(无穷等比数列 ()的和).181.函数的极限定理 .182.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x0的附近满足:
(1); (2)(常数), 则.本定理对于单侧极限和的情况仍然成立.183.几个常用极限 (1),();
(2),.184.两个重要的极限 (1);
(2)(e=2.718281845…).185.函数极限的四则运算法则 若,,则 (1);
(2); (3).186.数列极限的四则运算法则 若,则 (1);
(2);
(3) (4)( c是常数).187.在处的导数(或变化率或微商) .188.瞬时速度 .189.瞬时加速度 .190.在的导数 .191.函数在点处的导数的几何意义 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.192.几种常见函数的导数 (1) (C为常数).(2) .(3) .(4) . (5) ;
.(6) ; .193.导数的运算法则 (1).(2).(3).194.复合函数的求导法则 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.195.常用的近似计算公式(当充小时) (1);;
(2);
;
(3);
(4);
(5)(为弧度);
(6)(为弧度);
(7)(为弧度) 196.判别是极大(小)值的方法 当函数在点处连续时, (1)如果在附近的左侧,右侧,则是极大值;
(2)如果在附近的左侧,右侧,则是极小值.197.复数的相等 .() 198.复数的模(或绝对值) ==.199.复数的四则运算法则 (1); (2); (3); (4).200.复数的乘法的运算律 对于任何,有 交换律:.结合律:.分配律: .201.复平面上的两点间的距离公式 (,). 202.向量的垂直 非零复数,对应的向量分别是,,则 的实部为零为纯虚数 (λ为非零实数).203.实系数一元二次方程的解 实系数一元二次方程, ①若,则; ②若,则; ③若,它在实数集内没有实数根;
在复数集内有且仅有两个共轭复数根. 高中数学知识点总结 1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么? 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:
(3)德摩根定律:
4.你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。
6.命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;
逆命题与否命题同真同假。
7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8.函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9.求函数的定义域有哪些常见类型? 10.如何求复合函数的定义域? 义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12.反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;
②互换x、y;
③注明定义域) 13.反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? ∴……) 15.如何利用导数判断函数的单调性? 值是( ) A.0 B.1 C.2 D.3 ∴a的最大值为3) 16.函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;
两个偶函数的乘积是偶函数;
一个偶函数与奇函数的乘积是奇函数。
17.你熟悉周期函数的定义吗? 函数,T是一个周期。) 如:
18.你掌握常用的图象变换了吗? 注意如下“翻折”变换:
19.你熟练掌握常用函数的图象和性质了吗? 的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 ②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质! (注意底数的限定!) 利用它的单调性求最值与利用均值不等式求最值的区别是什么? 20.你在基本运算上常出现错误吗? 21.如何解抽象函数问题? (赋值法、结构变换法) 22.掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。) 如求下列函数的最值:
23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗? 24.熟记三角函数的定义,单位圆中三角函数线的定义 25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? (x,y)作图象。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 29.熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式:
图象? 30.熟练掌握同角三角函数关系和诱导公式了吗? “奇”、“偶”指k取奇、偶数。
A.正值或负值 B.负值 C.非负值 D.正值 31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:
应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法:
(2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,注意运用代数运算。
32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? (应用:已知两边一夹角求第三边;
已知三边求角。) 33.用反三角函数表示角时要注意角的范围。
34.不等式的性质有哪些? 答案:C 35.利用均值不等式:
值?(一正、二定、三相等) 注意如下结论:
36.不等式证明的基本方法都掌握了吗? (比较法、分析法、综合法、数学归纳法等) 并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。) 38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始 39.解含有参数的不等式要注意对字母参数的讨论 40.对含有两个绝对值的不等式如何去解? (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。) 证明:
(按不等号方向放缩) 42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题) 43.等差数列的定义与性质 0的二次函数) 项,即:
44.等比数列的定义与性质 46.你熟悉求数列通项公式的常用方法吗? 例如:(1)求差(商)法 解:
[练习] (2)叠乘法 解:
(3)等差型递推公式 [练习] (4)等比型递推公式 [练习] (5)倒数法 47.你熟悉求数列前n项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:
[练习] (2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
[练习] 48.你知道储蓄、贷款问题吗? △零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类) 若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足 p——贷款数,r——利率,n——还款期数 49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一 (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不 50.解排列与组合问题的规律是:
相邻问题捆绑法;
相间隔问题插空法;
定位问题优先法;
多元问题分类法;
至多至少问题间接法;
相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩 则这四位同学考试成绩的所有可能情况是( ) A.24 B.15 C.12 D.10 解析:可分成两类:
(2)中间两个分数相等 相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况 51.二项式定理 性质:
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第 表示) 52.你对随机事件之间的关系熟悉吗? 的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53.对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即 (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生 如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;
(2)从中任取5件恰有2件次品;
(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103 而至少有2件次品为“恰有2次品”和“三件都是次品” (4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序) 分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;
系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;
分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:
(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56.你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:
(8)平面向量基本定理(向量的分解定理) 的一组基底。
(9)向量的坐标表示 表示。
57.平面向量的数量积 数量积的几何意义:
(2)数量积的运算法则 [练习] 答案:
答案:2 答案:
58.线段的定比分点 ※.你能分清三角形的重心、垂心、外心、内心及其性质吗? 59.立体几何中平行、垂直关系证明的思路清楚吗? 平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
60.三类角的定义及求法 (1)异面直线所成的角θ,0°<θ≤90° (2)直线与平面所成的角θ,0°≤θ≤90° (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。) 三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习] (1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。
(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……) 61.空间有几种距离?如何求距离? 点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。
62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质? 正棱柱——底面为正多边形的直棱柱 正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
它们各包含哪些元素? 63.球有哪些性质? (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角! (3)如图,θ为纬度角,它是线面成角;
α为经度角,它是面面成角。
(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
积为( ) 答案:A 64.熟记下列公式了吗? (2)直线方程:
65.如何判断两直线平行、垂直? 66.怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67.怎样判断直线与圆锥曲线的位置? 68.分清圆锥曲线的定义 70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。) 71.会用定义求圆锥曲线的焦半径吗? 如:
通径是抛物线的所有焦点弦中最短者;
以焦点弦为直径的圆与准线相切。
72.有关中点弦问题可考虑用“代点法”。
答案:
73.如何求解“对称”问题? (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。
75.求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法) 76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值 高中数学知识易错点梳理 一、集合、简易逻辑、函数 1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合 B={0,|x|,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;
与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。
3. 集合 A、B,时,你是否注意到“极端”情况:或;
求集合的子集时是否忘记.例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗? 4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合M共有多少个 5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。
7. (CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B);
;
8、可以判断真假的语句叫做命题.逻辑连接词有“或”、“且”和“非”.p、q形式的复合命题的真值表: p q P且q P或q 真 真 真 真 真 假 假 真 假 真 假 真 假 假 假 假 9、命题的四种形式及其相互关系原命题 若p则q 逆命题 若q则p 否命题 若﹃p则﹃q 逆否命题 若﹃q则﹃p 互 逆 互 互 互 为互 否 逆 逆否 否 否 否否 否互 逆 原命题与逆否命题同真同假;
逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f:A→B中,A中元素的任意性和B中与它对应元素的唯一性,哪几种对应能够成映射? 11、函数的几个重要性质:
①如果函数对于一切,都有或f(2a-x)=f(x),那么函数的图象关于直线对称. ②函数与函数的图象关于直线对称;
函数与函数的图象关于直线对称;
函数与函数的图象关于坐标原点对称. ③若奇函数在区间上是递增函数,则在区间上也是递增函数. ④若偶函数在区间上是递增函数,则在区间上是递减函数. ⑤函数的图象是把函数的图象沿x轴向左平移a个单位得到的;
函数(的图象是把函数的图象沿x轴向右平移个单位得到的;
函数+a的图象是把函数助图象沿y轴向上平移a个单位得到的;函数+a的图象是把函数助图象沿y轴向下平移个单位得到的. 12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=的定义域是 ;
复合函数的定义域弄清了吗?函数的定义域是[0,1],求的定义域.函数的定义域是[], 求函数的定义域 14、含参的二次函数的值域、最值要记得讨论。若函数y=asin2x+2cosx-a-2(a∈R)的最小值为m, 求m的表达 15、函数与其反函数之间的一个有用的结论:设函数y=f(x)的定义域为A,值域为C,则 ①若a∈A,则a=f-1 [f(a)]; 若b∈C,则b=f[f-1 (b)]; ②若p∈C,求f-1 (p)就是令p=f(x),求x.(x∈A) 即互为反函数的两个函数的图象关于直线y=x对称, 16、互为反函数的两个函数具有相同的单调性;原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;
但一个函数存在反函数,此函数不一定单调. 17、判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数; 18、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法。
19、你知道函数的单调区间吗?(该函数在和上单调递增;
在和上单调递减)这可是一个应用广泛的函数! 20、解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.21、对数的换底公式及它的变形,你掌握了吗?() 22、你还记得对数恒等式吗?() 23、 “实系数一元二次方程有实数解”转化为“”,你是否注意到必须;
当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形? 二、三角、不等式 24、三角公式记住了吗?两角和与差的公式________________;
二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;
解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 25、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗? 26、在三角中,你知道1等于什么吗?( 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;
诱导公试:奇变偶不变,符号看象限) 27、在三角的恒等变形中,要特别注意角的各种变换.(如 等) 28、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来) 29、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次);
你还记得降幂公式吗?cos2x=(1+cos2x)/2;sin2x=(1-cos2x)/2 30、你还记得某些特殊角的三角函数值吗? () 31、你还记得在弧度制下弧长公式和扇形面积公式吗?() 32、 辅助角公式:(其中角所在的象限由a, b 的符号确定,角的值由确定)在求最值、化简时起着重要作用.33、三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x值的集合吗?(别忘了kZ) 三角函数性质要记牢。函数y=k的图象及性质:
振幅|A|,周期T=, 若x=x0为此函数的对称轴,则x0是使y取到最值的点,反之亦然,使y取到最值的x的集合为——————————, 当时函数的增区间为————— ,减区间为—————;
当时要利用诱导公式将变为大于零后再用上面的结论。
五点作图法:令依次为 求出x与y,依点作图 34、三角函数图像变换还记得吗? 平移公式 (1)如果点 P(x,y)按向量 平移至P′(x′,y′),则 (2) 曲线f(x,y)=0沿向量平移后的方程为f(x-h,y-k)=0 35、有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式 36、在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义? ①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是. ②直线的倾斜角、到的角、与的夹角的取值范围依次是. ③反正弦、反余弦、反正切函数的取值范围分别是. 37、同向不等式能相减,相除吗? 38、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式) 39、分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,奇穿偶回) 40、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 41、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论) 42、利用重要不等式 以及变式等求函数的最值时,你是否注意到a,b(或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?(一正二定三相等) 43、(当且仅当时,取等号);
a、b、cR,(当且仅当时,取等号);
44、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解集是……. 45、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 46、对于不等式恒成立问题,常用的处理方式?(转化为最值问题) 三、数列 47、等差数列中的重要性质:(1)若,则;
(2);
(3)若三数成等差数列,则可设为a-d、a、a+d;
若为四数则可设为a-、a-、a+、a+;
(4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组 an ≥0 an+1 ≤0 可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组 an ≤0 an+1 ≥0 可得Sn 达最小值时的n的值;(5).若an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则。.(6).若{}是等差数列,则{}是等比数列,若{}是等比数列且,则{}是等差数列.48、等比数列中的重要性质:(1)若,则;
(2),,成等比数列 49、你是否注意到在应用等比数列求前n项和时,需要分类讨论.(时,;
时,) 50、等比数列的一个求和公式:设等比数列的前n项和为,公比为, 则 . 51、等差数列的一个性质:设是数列的前n项和,为等差数列的充要条件是 (a, b为常数)其公差是2a.52、你知道怎样的数列求和时要用“错位相减”法吗?(若,其中是等差数列,是等比数列,求的前n项的和) 53、用求数列的通项公式时,你注意到了吗? 54、你还记得裂项求和吗?(如 .) 四、排列组合、二项式定理 55、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合. 56、解排列组合问题的规律是:相邻问题捆绑法;
不邻问题插空法;
多排问题单排法;
定位问题优先法;
多元问题分类法;
有序分配问题法;
选取问题先排后排法;
至多至少问题间接法,还记得什么时候用隔板法? 57、排列数公式是:
组合数公式是:
排列数与组合数的关系是:
组合数性质:= += = 二项式定理:
二项展开式的通项公式:
五、立体几何 58、有关平行垂直的证明主要利用线面关系的转化:线//线线//面面//面,线⊥线线⊥面面⊥面,垂直常用向量来证。
59、作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三作斜线,射影可见.60、二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量 61、求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法) 62、你记住三垂线定理及其逆定理了吗? 63、有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度及纬度的含义吗?(经度是面面角;
纬度是线面角) 64、你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V为顶点数,E是棱数,F为面数),棱的两种算法,你还记得吗?(①多面体每面为n边形,则E=;
②多面体每个顶点出发有m条棱,则E=) 六、解析几何 65、设直线方程时,一般可设直线的斜率为k,你是否注意到直线垂直于x轴时,斜率k不存在的情况?(例如:一条直线经过点,且被圆截得的弦长为8,求此弦所在直线的方程。该题就要注意,不要漏掉x+3=0这一解.) 66、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 线段的定比分点坐标公式 设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,则 中点坐标公式 若,则△ABC的重心G的坐标是。
67、在利用定比分点解题时,你注意到了吗? 68、在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.69、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线) 70、对不重合的两条直线,,有 ;
. 71、直线在坐标轴上的截矩可正,可负,也可为0.72、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当 a=0时,直线y=kx在两条坐标轴上的截距都是0,也是截距相等. 73、两直线和的距离公式d=—————————— 74、直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线L的方向向量为=(x0,y0)时,直线斜率k=———————;
当直线斜率为k时,直线的方向向量=————— 75、到角公式及夹角公式———————,何时用? 76、处理直线与圆的位置关系有两种方法:(1)点到直线的距离;
(2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷. 77、处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.78、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质.79、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结伴而用,有时对我们解题有很大的帮助,有关过焦点弦问题用第二定义可能更为方便。(焦半径公式:椭圆:|PF1|=———— ;
|PF2|=———— ;
双曲线:|PF1|=———— ;
|PF2|=———— (其中F1为左焦点F2为右焦点 );
抛物线:|PF|=|x0|+) 80、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).81、椭圆中,a,b,c的关系为————;
离心率e=————;
准线方程为————;
焦点到相应准线距离为———— 双曲线中,a,b,c的关系为————;
离心率e=————;
准线方程为————;
焦点到相应准线距离为———— 82、通径是抛物线的所有焦点弦中最短的弦.83、你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,有时起着关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要思想方法,要记得画图分析哟! 84、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀! 85、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y的系数变为正值。如:求2<5a-2b<4,-3<3a+b<3求a+b的取值范围,但也可以不用线性规划。
七、向量 86、两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意是向量平行的充分不必要条件。(定义及坐标表示) 87、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2=·, cosθ= 88、利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意是向量夹角为钝角的必要而非充分条件。
89、向量的运算要和实数运算有区别:如两边不能约去一个向量,向量的乘法不满足结合律,即,切记两向量不能相除。
90、你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清楚吗? 91、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量。
92、 向量的直角坐标运算 设,则 设A=, B=, 则- = 八、导数 93、导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。
94、几个重要函数的导数:①,(C为常数)② 导数的四运算法则 95、利用导数可以证明或判断函数的单调性,注意当f ’(x)≥0或f ’(x)≤0,带上等号。
96、(x0)=0是函数f(x)在x0处取得极值的非充分非必要条件,f(x)在x0处取得极值的充分要条件是什么? 97、利用导数求最值的步骤:(1)求导数(2)求方程=0的根 (3)计算极值及端点函数值的大小 (4)根据上述值的大小,确定最大值与最小值.98、求函数极值的方法:先找定义域,再求导,找出定义域的分界点,根据单调性求出极值。告诉函数的极值这一条件,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值。
九、概率统计 99、有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。
1)若事件A、B为互斥事件,则 P(A+B)=P(A)+P(B) (2)若事件A、B为相互独立事件,则 P(A·B)=P(A)·P(B) (3)若事件A、B为对立事件,则 P(A)+P(B)=1 一般地, (4)如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率 100、抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;
系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;
分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概率相等。
101、用总体估计样本的方法就是把样本的频率作为总体的概率。
十、解题方法和技巧 102、总体应试策略:先易后难,一般先作选择题,再作填空题,最后作大题,选择题力保速度和准确度为后面大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题,尽可能不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠,给自己营造一个良好的心理环境,这是考试成功的重要保证。
103、解答选择题的特殊方法是什么?(顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、数形结合法等等) 104、解答填空题时应注意什么?(特殊化,图解,等价变形) 105、解答应用型问题时,最基本要求是什么?(审题、找准题目中的关键词,设未知数、列出函数关系式、代入初始条件、注明单位、答) 106、解答开放型问题时,需要思维广阔全面,知识纵横联系. 107、解答信息型问题时,透彻理解问题中的新信息,这是准确解题的前提. 108、解答多参型问题时,关键在于恰当地引出参变量, 想方设法摆脱参变量的困绕.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性通法. 109、学会跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用“由已知得”“由题意得”“由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。
《机关公文常用词句集锦》一一 1、常用排比:
新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;
重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;
法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;
热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;
政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;
出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;
活动力、控制力、影响力、创造力、凝聚力、战斗力;
找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;
必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。
审判工作有新水平、队伍建设有新境界、廉政建设有新举措、自身建设有新发展、法院管理有新突破;
不动摇、不放弃、不改变、不妥协;
政治认同、理论认同、感情认同;
是历史的必然、现实的选择、未来的方向。
多层次、多方面、多途径;
要健全民主制度,丰富民主形式,拓宽民主渠道,依法实行民主选举、民主决策、民主管理、民主监督 2、常用短语:
立足当前,着眼长远,自觉按规律办事 抓住机遇,应对挑战:量力而行,尽力而为 有重点,分步骤,全面推进,统筹兼顾,综合治理,融入全过程,贯穿各方面,切实抓好,减轻,扎实推进,加快发展,持续增收,积极稳妥,落实,从严控制严格执行,坚决制止,明确职责,高举旗帜,坚定不移,牢牢把握,积极争取,深入开展,注重强化,规范,改进,积极发展,努力建设,依法实行,良性互动,优势互补,率先发展,互惠互利,做深、做细、做实、全面分析,全面贯彻,持续推进,全面落实、实施,逐步扭转,基本形成,普遍增加,基本建立,更加完备(完善),明显提高(好转),进一步形成,不断加强(增效,深化),大幅提高,显着改善(增强),日趋完善,比较充分。
3、常用动词:
推进,推动,健全,统领,协调,统筹,转变,提高,实现,适应,改革,创新,扩大,加强,促进,巩固,保障,方向,取决于,完善,加快,振兴,崛起,分工,扶持,改善,调整,优化,解决,宣传,教育,发挥,支持,带动,帮助,深化,规范,强化,统筹,指导,服务,健全,确保,维护,优先,贯彻,实施,深化,保证,鼓励,引导,坚持,深化,强化,监督,管理,开展,规划,整合,理顺,推行,纠正,严格,满足,推广,遏制,整治,保护,健全,丰富,夯实,树立,尊重,制约,适应,发扬,拓宽,拓展,规范,改进,形成,逐步,实现,规范,坚持,调节,取缔,调控,把握,弘扬,借鉴,倡导,培育,打牢,武装,凝聚,激发,说服,感召,尊重,包容,树立,培育,发扬,提倡,营造,促进,唱响,主张,弘扬,通达,引导,疏导,着眼,吸引,塑造,搞好,履行,倾斜,惠及,简化,衔接,调处,关切,汇集,分析,排查,协商,化解,动员,联动,激发,增进,汲取,检验,保护,鼓励,完善,宽容,增强,融洽,凝聚,汇集,筑牢,考验,进取,凝聚,设置,吸纳,造就 4、常用名词 关系,力度,速度,反映,诉求,形势,任务,本质属性,重要保证,总体布局,战略任务,内在要求,重要进展,决策部署,结合点,突出地位,最大限度,指导思想,科学性,协调性,体制机制,基本方略,理念意识,基本路线,基本纲领,秩序,基本经验,出发点,落脚点,要务,核心,主体,积极因素,水平,方针,结构,增量,比重,规模,标准,办法,主体,作用,特色,差距,渠道,方式,主导,纽带,主体,载体,制度,需求,能力,负担,体系,重点,资源,职能,倾向,秩序,途径,活力,项目,工程,政策,项目,竞争力,环境,素质,权利,利益,权威,氛围,职能,作用,事权,需要,能力,基础,比重,长效机制,举措,要素,精神,根本,地位,成果,核心,精神,力量,纽带,思想,理想,活力,信念,信心,风尚,意识,主旋律,正气,热点,情绪,内涵,管理,格局,准则,网络,稳定,安全,支撑,局面,环境,关键,保证,本领,突出,位置,敏锐性,针对性,有效性,覆盖面,特点,规律,阵地,政策,措施,制度保障,水平,紧迫,任务,合力。
5、其它:
以求真务实的态度,积极推进综合调研制度化。
以为领导决策服务为目的,积极推进xx正常化。
以体现水平为责任,积极推进xx工作程序化。
以畅通安全为保障,积极推进xx工作智能化。
以立此存照为借鉴,积极推进xx工作规范化。
以解决问题为重点,积极推进xx工作有序化。
以服务机关为宗旨,积极推进xx服务优质化 以统筹兼顾为重点,积极推进xx工作常态化。
以求真务实的态度,积极参与综合调研。
以为领导决策服务为目的,把好信息督查关。
以体现xx水平为责任,进一步规范工作。
以畅通安全为保障,全力指导机要保密工作。
以立此存照为借鉴,协调推进档案史志工作。
以安全稳定为基础,积极稳妥做好信访工作。
以服务机关为宗旨,全面保障后勤服务。
以整体推进为出发点,协调做好xx工作。
以周到服务为前提,xx工作迅速到位。
以提高服务水平为目标,开始推行xx。
一.求真务实,积极推进xx工作制度化 二.建立体系,积极推进xx工作正常化。
三.规范办文,积极推进xx工作程序化。
四.各司其职,积极推进xx工作有序化。
五.注重质量,积极推进xx服务规范化。
六.统筹兼顾,积极推进xx工作正常化。
一是求真务实,抓好综合调研。
二是提高质量,做好信息工作。
三是紧跟进度,抓好督查工作。
四是高效规范,抓好文秘工作。
五是高度负责,做好保密工作。
六是协调推进,做好档案工作。
七是积极稳妥,做好信访工作。
八是严格要求,做好服务工作。
一、创思路,订制度,不断提高服务水平 二、抓业务,重实效,开创工作新局面 (一)着眼全局,充分发挥参谋助手作用 (二)明确分工,充分搞好统筹协调工作 三、重协调,强进度,信息化工作有新成果 四、抓学习,重廉洁,自身素质取得新提高 一、注重学习,自身素质取得新提高 二、围绕中心,不断开创工作新局面 1.着眼全局,做好辅政工作。
2.高效规范,做好文秘工作。
3.紧跟进度,做好督查工作。
4.提高质量,做好信息工作。
5.周密细致,做好协调工作。
6.协调推进,做好档案工作。
一是建章立制,积极推进xx管理制度化。
二是规范办文,积极推进xx工作程序化。
三是建立体系,积极推进xx督查正常化。
四是注重质量,积极推进xx工作规范化。
五是各司其职,积极推进xx工作有序化。
首先要树立正确的群众利益观,坚持把实现好、维护好、发展好最广大人民群众的根本利益作为促进社会和谐的出发点,在全社会形成和谐社会人人共享的生动局面。
其次,是要树立正确的维护稳定观,坚持把确保稳定作为人民法院促进社会和谐的生命线。
第三,是要树立正确的纠纷解决观,坚持把调判结合作为有效化解不和谐因素、增加和谐因素的有效途径。
第四,是要树立正确的司法和谐观,最大限度地实现法律效果与社会效果的高度统一。
机关公文常用词汇集锦 动词一字部:
抓,搞,上,下,出,想,谋 动词二字部:
分析,研究,了解,掌握,发现,提出,推进,推动,制定,出台,完善,建立,健全,加强,强化,增强,促进,加深,深化,扩大,落实,细化,突出,建设,营造,开展,发挥,发扬,创新,转变,发展,统一,提高,提升,保持,优化,召开,举行,贯彻,执行,树立,引导,规范,整顿,服务,协调,沟通,配合,合作,支持,加大,开拓,拓展,巩固,保障,保证,形成,指导 名词:
体系,机制,体制,系统,规划,战略,方针,政策,措施,要点,重点,焦点,难点,热点,亮点,矛盾,问题,建设,思想,认识,作风,整治,环境,秩序,作用,地方,基层,传统,运行,监测,监控,调控,监督,工程,计划,行动,创新,增长,方式,模式,转变,质量,水平,效益,会议,文件,精神,意识,服务,协调,沟通,力度,领域,空间,成绩,成就,进展,实效,基础,前提,关键,保障,动力,条件,环节,方法,思路,设想,途径,道路,主意,办法,力气,功夫,台阶,形势,情况,意见,建议,网络,指导,指南,目录,方案 形容词一字部:
多,宽,高,大,好,快,省,新 形容词二字部:
持续,快速,协调,健康,公平,公正,公开,透明,富强,民主,文明,和谐,祥和,优良,良好,合理,稳定,平衡,均衡,稳健,平稳,统一,现代 副词一字部:
狠,早,细,实,好,很,较,再,更 副词二字部:
加快,尽快,抓紧,尽早,整体,充分,继续,深入,自觉,主动,自主,密切,大力,全力,尽力,务必,务求,有效 副词三字部:进一步 后缀:化,型,性 词组:
统一思想,提高认识,认清形势,明确任务,加强领导,完善机制,交流经验,研究问题,团结协作,密切配合,真抓实干,开拓进取,突出重点,落实责任,各司其职,各负其责,集中精力,聚精会神,一心一意,心无旁骛,兢兢业业,精益求精,一抓到底,爱岗敬业,求真务实,胸怀全局,拓宽视野。
第二篇:高中立体几何常用结论、定理
立体几何中的定理、公理和常用结论
一、定理
1.公理
1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
若A∈l,B∈l,A∈,B∈,则l⊂.
2.公理
2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.
P∈,P∈∩=l,且P∈l.
3.公理
3经过不在同一条直线上的三点,有且只有一个平面.
推论1
经过一条直线和这条直线外的一点,有且只有一个平面. 推论2
经过两条相交直线,有且只有一个平面. 推论3
经过两条平行直线,有且只有一个平面.
4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a⊂α,A∈/α,B∈α,B∈/a,则直线AB和直线a是异面直线.) 5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.
6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等. 7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.
若b∥c,a⊥b,则a⊥c.
8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. 若a⊂/,b⊂,a∥b,则a∥.
9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 若a∥,a⊂β,⋂β=b,则a∥b.
10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直.
若m⊂α,n⊂α,m⋂n=O,l⊥m,l⊥n,则l⊥α. 11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.
若a∥b,a⊥α,则b⊥α.
12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.
若a⊥α,b⊥α,则a∥b.
13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
若a,b,a⋂b=A,a∥,b∥,则∥.
14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
若∥,∩γ=a,∩γ=b,则a∥b.
15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.
若α∥β,a⊥α,则a⊥β.
16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 若l⊥,l,则⊥.
17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 若⊥,∩=l,a,a⊥l,则a⊥.
18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内. 若⊥,P∈,P∈a,a⊥,则a⊂.
19.长方体的体积公式:V长方体=abc,其中a,b,c分别为长方体的长、宽、高.
20.祖暅原理:两个等高(夹在两个平行平面之间)的几何体,如果在任何等高处的截面积都相等,那么这两个几何体的体积相等.
二、常识
1.过空间一点,与已知平面垂直的直线有且只有一条. 2.过空间一点,与已知直线垂直的平面有且只有一个. 3.经过平面外一点有且只有一个平面和已知平面平行.
三、常用结论
(可用来解决选择、填空题)
1.空间四点A、B、C、D,若直线AB与CD异面,则AC与BD,AD与BC也一定异面. 2.如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内. 3.如果过平面内一点的直线垂直于与此平面垂直的一条直线,那么这条直线在此平面内. 4.夹在两个平行平面间的平行线段相等.
5.经过两条异面直线中的一条,有且只有一个平面与另一条直线平行.
6.若直线a同时平行于两个相交平面,则a一定也平行于这两个相交平面的交线. 7.如果一条直线垂直于一个三角形的两边,那么它也垂直于第三边.
8.如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线所在直线上.
9.如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行.
10.平行于同一平面的两个平面平行.
11.空间四面体A-BCD中,若有两对对棱互相垂直,则第三对对棱也互相垂直,且顶点A在平面BCD内的射影是△BCD的垂心(类似地,顶点B在平面ACD内的射影是ΔACD的垂心,…).
12.空间四面体P-ABC中,若PA、PB、PC两两垂直,则 ①点P在平面ABC内的射影是ΔABC的垂心;
②△ABC的垂心O也是点P在平面ABC内的射影(PO⊥平面ABC). 13.空间四面体P-ABC中,
①若PA=PB=PC,则点P在平面ABC内的射影是△ABC的外心.
②若三个侧面上的斜高PH1=PH2=PH3,则点P在平面ABC内的射影是△ABC的内心. 14.如果两个平面同时垂直于第三个平面,那么这两个平面的交线垂直于第三个平面. 若⊥,P∈,P∈a,a⊥,则a⊂.
第三篇:高中数学二级结论
1.
任意的简单n面体内切球半径为(V是简单n面体的体积,是简单n面体的表面积)
2.在任意内,都有tanA+tanB+tanC=tanA·tanB·tanC
推论:在内,若tanA+tanB+tanC<0,则为钝角三角形
3.
斜二测画法直观图面积为原图形面积的倍
4.
过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点
5.
导数题常用放缩、、
6.
椭圆的面积S为
7.
圆锥曲线的切线方程求法:隐函数求导
推论:①过圆上任意一点的切线方程为
②过椭圆上任意一点的切线方程为
③过双曲线上任意一点的切线方程为
8.
切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程
①圆的切点弦方程为
②椭圆的切点弦方程为
③双曲线的切点弦方程为
④抛物线的切点弦方程为
⑤二次曲线的切点弦方程为
9.
①椭圆与直线相切的条件是
②双曲线与直线相切的条件是
10.
若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,并有,(,分别表示AC和BD的斜率)
11.
已知椭圆方程为,两焦点分别为,,设焦点三角形中,则()
12.
椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为的点P的距离)公式
13.
已知,,为过原点的直线,,的斜率,其中是和的角平分线,则,,满足下述转化关系:
,,
14.
任意满足的二次方程,过函数上一点的切线方程为
15.
已知f(x)的渐近线方程为y=ax+b,则,
16.
椭圆绕Ox坐标轴旋转所得的旋转体的体积为
17.
平行四边形对角线平方之和等于四条边平方之和
18.
在锐角三角形中
19.
函数f(x)具有对称轴,,则f(x)为周期函数且一个正周期为
20.
y=kx+m与椭圆相交于两点,则纵坐标之和为
21.
已知三角形三边x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如,,)
22.
圆锥曲线的第二定义:
椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,)的点的集合(定点F不在定直线上,该常数为小于1的正数)
双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线
23.
到角公式:若把直线依逆时针方向旋转到与第一次重合时所转的角是,则
24.
A、B、C三点共线(同时除以m+n)
25.
过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为
26.
反比例函数为双曲线,其焦点为和,k<0
27.面积射影定理:如图,设平面α外的△ABC在平面α内的射影为△ABO,分别记△ABC的面积和△ABO的面积为S和S′,记△ABC所在平面和平面α所成的二面角为θ,则cosθ=S′:S
28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线
29.数列不动点:
定义:方程的根称为函数的不动点
利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法
定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.
定理2:设,满足递推关系,初值条件
(1)若有两个相异的不动点,则
(这里)
(2)若只有唯一不动点,则
(这里)
定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,
30.
(1),
(2)若,则:
①
②
③
④
⑤
⑥
⑦
⑧
(3)在任意△ABC中,有:
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
⑪
⑫
⑬
⑭
(4)在任意锐角△ABC中,有:
①
②
③
④
31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上
32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高
拟柱体体积公式[辛普森(Simpson)公式]:设拟柱体的高为H,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h的不超过3次的函数,那么该拟柱体的体积V为,式中,和是两底面的面积,是中截面的面积(即平面γ与底面之间距离时得到的截面的面积)
事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积
33.三余弦定理:设A为面上一点,过A的斜线AO在面上的射影为AB,AC为面上的一条直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:cos∠OAC=cos∠BAC·cos∠OAB(∠BAC和∠OAB只能是锐角)
34.
在Rt△ABC中,C为直角,内角A,B,C所对的边分别是a,b,c,则△ABC的内切圆半径为
35.
立方差公式:
立方和公式:
36.
已知△ABC,O为其外心,H为其垂心,则
37.
过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值
推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值
38.
推论:
39.
推论:①
②
40.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦
41.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)
42.向量与三角形四心:
在△ABC中,角A,B,C所对的边分别是a,b,c
(1)是的重心
(2)为的垂心
(3)为的内心
(4)为的外心
43.正弦平方差公式:
44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点
45.三角函数数列求和裂项相消:
46.点(x,y)关于直线Ax+By+C=0的对称点坐标为
47.圆锥曲线统一的极坐标方程:(e为圆锥曲线的离心率)
48.超几何分布的期望:若,则(其中为符合要求元素的频率),
49.为公差为d的等差数列,为公比为q的等比数列,若数列满足,则数列的前n项和为
50.若圆的直径端点,则圆的方程为
51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值
52.二项式定理的计算中不定系数变为定系数的公式:
53.三角形五心的一些性质:
(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等
(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心
(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心
(4)三角形的外心是它的中点三角形的垂心
(5)三角形的重心也是它的中点三角形的重心
(6)三角形的中点三角形的外心也是其垂足三角形的外心
(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍
54.在△ABC中,角A,B,C所对的边分别是a,b,c,则
55.m>n时,
第四篇:高中数学常用公式定理汇总
2011年高考数学资料整理
高中数学常用公式定理汇总
集合类:
ABAABABBAB
逻辑关系类:
对数类:
logaM+logaN=logaMNlogMaM-logaN=logaN
logaMN=NlogaM logab
MN
=
Nb
logaMloga1=0
logaa=1loga1=-1a
loga^b
a
=b
logaa^b=blogab=alogba=1a
三角函数类:
sin,一二正
co,s一四正tan,一三正
sinsin
coscos
tantan
sin
2
cos
2
1sin2
cossin
cos2
cos
sin
cos2
2
sin
2
1
asinA
bsinB
csinC
2R
abcsinAsinBsinC
a*ba*b*cosa*b
cos
a*b
xx
yy
a
b
c
2bccosA
cosA
2bc
xx
221
*
yy
x
21
y
x
22
y
22
流程图类:
Int2.52.52 (取不大于2.5的最大整数) mod10,31
平面几何类:
(取10除以3的余数)
圆标方程xa圆心:a,b
yb
r
函数类:
斜率:k
yx
22
y(xx
11
圆一般方程x
y
DxEyF0
x)
D
E
4F0
点斜式:yy
y
kx
x
x
11
y
两点式:
yy
xx
DE
圆心:,;半径:
22
4F
点点距离: PP
截距式:
xa
yb
1
0 ba
x2x1y2y1
一般式:AxByC韦达定理:x
x
1//2k1k2
点线距离:d
c
xx
a
A
x
B
y
C
A
22
B
A
x
B
yC10
与A2xB2yC20
平行:AB垂直:AA
AB BB
椭圆:ab
22
yb
1ab0
0
a
c
焦点:(c,0) ,(-c,0)
c
平行:A1xB1yC30 垂直:B1xA1yC30
平面向量类:
ab
a//b
离心率:e准线:x
a
c
双曲线:a
22
yb
1a,b0
b
c
a
xx
,2
y
y
焦点:(c,0) ,(-c,0)离心率:e
a
c
xy
xy
0
准线:x渐近线:y
c
ba
x
抛物线:y
2px
(p>0)
p
焦点:F,0
2
x2x
2,
11
2xx
,
x
,
x
1
离心率:eca
准线:xp2
数列类:
等差:ana1n1d
a
n
a
m
nmd
S
1
n
n
n2
n
a
nn12
d
mnpq
a
m
a
n
a
p
aq
等比:an1
na1q
a
n
a
nm
m
q
S
a11n
q
a1
anq
n
1q1q (q≠1)
mnpq
am
a
n
ap
aq
线性规划类:
n
nxn
niyixi
y
ii1bi1
i1*n2
nx2
nix
ii1i1
aybx
nxiyinxyx
i
xyiy
**bi1
n
n
x2
x2inx
i
x
i1
i1
aybx
导数类:
kxb,
kC
,
(0C为常数)
x
,
1
ax
,
a
x
lnaa0,且a1e
x
,
ex
log
a
x
,
1e
xloga
1xlna
a
0,且a1
lnx,
1 sinx
,
x
cosx
cosx
,
sinx
fxgx,
f
,
xg
,
x
Cfx,
Cf
,
xC为常数
fxgx,
f
,
xgxfxg,x
fx,
f
,
xgxfxg,x
gx
g2
x
gx0 复数:
i
1
abicdiac,bd
abicdiacbdi abicdiacbdi abicdiac
bdbcadi
x2y
xyixyi
Zar,以a,0为圆心,r为半径的圆
Zabir,以a,b为圆心,r为半径的圆
1
3-2
2i
1
1i2
2i12
0
ax
bxc0,
b2
4ac0
x
b
4acb2
求根公式:
i
2a
向量与向量模关系:
Z1Z2Z1Z2Z1Z2
Z1,Z2是二次方程的根,那么即Z1abi,Z2abi
Z1,Z2共轭。
等式与不等式:
ababaabb
ac2
2a
b
aabb
22
b3b
a
24
abc2
3abc
ab2ab,
ab2
ab,ab时取“”
ab2ab
22
abcabbcac
222
平面几何类:
内心:三条角平分线的交点
(到交边距离相等,为内切圆圆心) 外心:三条中垂线的交点(外接圆的圆心) 垂心:三条高线的交点 重心:三条中线的交点
S三角形
1
ppapbpc注:pabc
2
角平分线:中
AD
12
ABAC
BDDC
:
线
2AB
长
AC
BC
12
S扇形rr弧长
22
立体几何类:
S直棱柱侧ch
ch
,
V柱体V长方体abcSh
V球
43
R
S正棱锥侧S正棱台侧
1212
,
,
V椎体V台体
1313
Sh
SS
,
S球
4R
S
,
cch
hS
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3:经过不在同一条直线上的三点,有且只有一个平面。 公理4:平行于同一条直线的两条直线互相平行。
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。
定理1:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
定理2:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线。
点、线、平面垂直:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直。
直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
两个平面垂直的判定定理:如果一个平面经过;另一个平面的一条垂线,那么这两个平面相互垂直。
两个平面垂直的性质定理:如果两个平面相互垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
第五篇:高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法
(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证
(2)综合法是由因导果,而分析法是执果索因换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法换元法主要放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法 典型题例
例1证明不等式1
121
31
n2n(n∈N*) 知识依托 本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等 例2求使xy≤axy(x>0,y>0)恒成立的a 知识依托 该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a>0,b>0,且a+b=1求证(a+11)(b+)ba证法一 (分析综合法)证法二(均值代换法)证法三(比较法)证法四 (综合法)证法五(三角代换法) 巩固练习 已知x、y是正变数,a、b是正常数,且ab=1,x+y的最小值为xy设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是 若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n) </n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)
312已知x,y,z∈R,且x+y+z=1,x2+y2+z2= x,y,z∈[0,] 23(1)a2+b2+c2≥证明下列不等式bc2ca2ab2z≥2(xy+yz+zx) xyabc
yzzxxy111(2)若x,y,z∈R+,且x+y+z=xyz,则≥2() xyzxyz(1)若x,y,z∈R,a,b,c∈R+,则
已知i,m、n是正整数,且1<i≤m </i≤m
m<miai
</miai
n (2) (1+m)n>(1+n)m
若a>0,b>0,a3+b3=2,求证 a+b≤2,ab≤1不等式知识的综合应用
典型题例
例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h米,盖子边长为a米,(1)求a关于h的解析式;(2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值(求解本题时,不计容器厚度)
知识依托本题求得体积V的关系式后,应用均值定理可求得最值
例2已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤
1(1)|c|≤1;
(2)当-1 ≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时, g(x)的最大值为2,求f(x)
知识依托 二次函数的有关性质、函数的单调性,绝对值不等式
例3设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x
1、x2满足0<x1<x2(1)当x∈[0,x1)时,证明x<f(x)<x1;
</x1<x2(1)当x∈[0,x1)时,证明x<f(x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明 x0<
x
1巩固练习
定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等
式,其中正确不等式的序号是()
①f(b)-f(-a)>g(a)-g(-b)②f(b)-f(-a)g(b)-g(-a)④f(a)-f(-b)
B②④
C①④
②③
下列四个命题中①a+b≥
2ab②sin2x+
19
4≥4③设x,y都是正数,若则x+y的最小值是12④=1,2
xysinx
若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真命题的序号是__________
已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2
(1)如果x1<2<x2-1; (2)如果|x1|<2,|x2-x1|=2,求b的取值范围</x2
设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<
</f(x)<
1(1)f(0)=1,且当x<0时,f(x)>1;
(2)f(x)在R上单调递减;
(3)设集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范围
2x2bxc
已知函数f(x)= (b<0)的值域是[1,3],
2x1
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;(3)若t∈R,求证 lg
711≤F(|t-|-|t+|)≤566数列与不等式的交汇题型分析及解题策略
【命题趋向】
数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】
题型一 求有数列参与的不等式恒成立条件下参数问题
求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立f(x)min≥M;f(x)≤M恒成立f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 11
1【例1】等比数列{an}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+an>…恒成立的正整数n的取
a1a2an值范围.【例2】(08·全国Ⅱ)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【点评】 一般地,如果求条件与前n
项和相关的数列的通项公式,则可考虑Sn与an的关系求解
题型二 数列参与的不等式的证明问题
此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.
【例3】 已知数列{an}是等差数列,其前n项和为Sn,a3=7,S4=24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设p、q都是正整
1数,且p≠q,证明:Sp+q<(S2p+S2q).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)
2因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{an}满足a1=0,an+1=can3+1-c,c∈N*,其中c为实数.(Ⅰ)证明:an∈[0,1]对任意n∈N*11成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c<,证明:an≥1-(3c)n1,n∈n*;(ⅲ)设0<c<,证明:a12+a22+…+an
</c<,证明:an≥1-(3c)n1,n∈n*;(ⅲ)设0<c<,证明:a12+a22+…+an
2332
>n+1-n∈N*.
1-3c
题型三 求数列中的最大值问题
求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.
【例5】 (08·四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为______.
【例6】 等比数列{an}的首项为a1=2002,公比q=-.(Ⅰ)设f(n)表示该数列的前n项的积,求f(n)的表达式;(Ⅱ)当n
取何值时,f(n)有最大值.
题型四 求解探索性问题
数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.
【例7】 已知{an}的前n项和为Sn,且an+Sn=4.(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)是否存在正整数k,使
【点评】在导出矛盾时须注意条件“k∈N*”,这是在解答数列问题中易忽视的一个陷阱.
【例8】 (08·湖北)已知数列{an}和{bn}满足:a1=λ,an+1=n+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整
3数.(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0 </a<b,sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<sn<b?若存在,求λ的取值范围;若不存在,说明理由.
数列与不等式命题新亮点
例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数„,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) „,则第50个括号内各数之和为_____.
点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设A. bn
Sk+1-2
>2成立. Sk-2
an是由正数构成的等比数列, bnan1an2,cnanan3,则()
S
cnB. bncnC. bncnD. bncn
点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对x(,1],不等式(m
m)2x()x1恒成立,则实数m的取值范围()
A
B
D
A. (2,3)B. (3,3)C. (2,2)D. (3,4)
例4四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰好回到S点的概率为Pn (1)求P
2、P3的值;(2)求证: 3Pn1Pn
例5 已知函数
1(n2,nN)(3)求证: P2P3„Pn>6n5(n2,nN)
2
4fxx2x.(1)数列
an满足: a10,an1fan,若
1
1对任意的nN恒成立,试求a1的取值范围; 2i11ai
,Sk为数列cn的前k项和, Tk为数列cn的
1bn
n
(2)数列
bn满足: b11,bn1fbnnN,记cn
Tk7
. 10k1SkTk
n
前k项积,求证
例6 (1)证明: ln
1xx(x0)(2)数列an中. a11,且an1
11
an2; n1
2n1n
2①证明: an【专题训练】
7n2②ane2n1 4
aaD.a6a8() D.bn≤cn
()
1.已知无穷数列{an}是各项均为正数的等差数列,则有
aaA.<
a6a8
aaB.
a6a8
aaC.>a6a8
2.设{an}是由正数构成的等比数列,bn=an+1+an+2,cn=an+an+3,则
A.bn>cn
B.bn<cn
</cn
C.bn≥cn
3.已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a11=b11,则()
A.a6=b6 A.9 A.S4a5<s5a4
</s5a4
B.a6>b6 B.8 B.S4a5>S5a4
C.a6
(n+32)Sn+1
1C.
40
D.a6>b6或a6
150
4.已知数列{an}的前n项和Sn=n2-9n,第k项满足5 </ak<8,则k=
5.已知等比数列{an}的公比q>0,其前n项的和为Sn,则S4a5与S5a4的大小关系是()
6.设Sn=1+2+3+…+n,n∈N*,则函数f(n)=
A.
120
B.
130
D.
7.已知y是x的函数,且lg3,lg(sinx-),lg(1-y)顺次成等差数列,则
A.y有最大值1,无最小值B.y有最小值
()
1111
C.y有最小值,最大值1D.y有最小值-1,最大值11212
()
D.(-∞,-1∪3,+∞)
8.已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是
A.(-∞,-1
B.(-∞,-1)∪(1,+∞)C.3,+∞)
9.设3b是1-a和1+a的等比中项,则a+3b的最大值为()
A.1()
A.充分不必要条件 11.{an}为等差数列,若
A.11
B.必要不充分条件C.充分比要条件
D.既不充分又不必要条件
()
B.2
C.
3D.4
10.设等比数列{an}的首相为a1,公比为q,则“a1<0,且0<qan”的</q
a1,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n= a10
B.17
C.19
D.21
12.设f(x)是定义在R上恒不为零的函数,对任意实数x、y∈R,都有f(x)f(y)=f(x+y),若a1=an=f(n)(n∈N*),则数列{an}
的前n项和Sn的取值范围是
1A.,2)
B.[,2]
() 1
C.1)
D.[1]
S13.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,记Tn=,如果存在正整数M,使得对一切正整数n,Tn≤M都
n
成立.则M的最小值是__________.
14.无穷等比数列{an}中,a1>1,|q|<1,且除a1外其余各项之和不大于a1的一半,则q的取值范围是________. (a+b)
215.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是________.cd
A.0
B.1
C.2
D.
416.等差数列{an}的公差d不为零,Sn是其前n项和,给出下列四个命题:①A.若d<0,且S3=S8,则{Sn}中,S5和S6都是
{Sn}中的最大项;②给定n,对于一定k∈N*(k0,则{Sn}中一定有最小的项;④存在k∈N*,使ak-ak+1和ak-ak1同号 其中真命题的序号是____________.
17.已知{an}是一个等差数列,且a2=1,a5=-5.(Ⅰ)求{an}的通项an;(Ⅱ)求{an}前n项和Sn的最大值.
18.已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)
若列数{b}满足b=1,b=b+2an,求证:b ·b<b2.
</b2.
n
n+1
n
n
n+2
n+1
19.设数列{an}的首项a1∈(0,1),an=
3-an1
n=2,3,4,…. 2
(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=a3-2an,证明bn
(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{an}中b1=2,bn+1=
3bn+4
n=1,2,3,….2
321.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函
数y=f(x)的图像上.(Ⅰ)求数列{an}的通项公式;
1m
(Ⅱ)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m
20anan+1
22.数列
,是常数.(Ⅰ)当a21时,求及a3的值;(Ⅱ)2,)an满足a11,an1(n2n)an(n1,
数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求的取值范围,使得存在正整数m,当nm时总有an
一、 利用导数证明不等式
(一)、利用导数得出函数单调性来证明不等式
0.
利用导数处理与不等式有关的问题
某个区间上导数大于(或小于)0时,则该单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。
1、 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大
(小),来证明不等式成立。
x2例1:x>0时,求证;x-ln(1+x)<0
2、把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的。 例2:已知:a,b∈R,b>a>e, 求证:ab>b a, (e为自然对数的底)
(二)、利用导数求出函数的最值(或值域)后,再证明不等式。
导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立。从而把证明不等式问题转化为函数求最值问题。 例
3、求证:n∈N*,n≥3时,2n >2n+1 例
4、g
x2(b1)2的定义域是A=[a,b),其中a,b∈R+,a
(x)(1)Aax
若x1∈Ik=[k2,(k+1)2), x2∈Ik+1=[(k+1)2,(k+2)2)
3、利用导数求出函数的值域,再证明不等式。 例5:f(x)=
41
3x-x, x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤
33
二、利用导数解决不等式恒成立问题
不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为m>f(x) (或m
a
(9(aR),对f(x)定义域内任意的x的值,f(x)≥27恒成立,求a的取值范围
x
nn
1例
7、已知a>0,n为正整数, (Ⅰ)设y=(xa),证明yn(xa);
n
(Ⅱ)设fn(x)=xn-(xa),对任意n≥a,证明f ’n+1 (n+1)>(n+1)f ’n(n)。
例
6、
已知函数f(x)
三、利用导数解不等式 例8:函数
ax(a0),解不等式f(x)≤1