范文网 论文资料 30吨医院污水处理方案(大全)

30吨医院污水处理方案(大全)

30吨医院污水处理方案方案的制定能最大程度的减少活动过程中的盲目性,保证各项事宜的有序开展,那么方案改如何进行书写呢?以下是小编收集整理的《30吨医院污水处理方案》仅供参考,大家一起来看看吧。第一篇:30吨医院污水处理方案30万吨合成氨联产。

30吨医院污水处理方案

方案的制定能最大程度的减少活动过程中的盲目性,保证各项事宜的有序开展,那么方案改如何进行书写呢?以下是小编收集整理的《30吨医院污水处理方案》仅供参考,大家一起来看看吧。

第一篇:30吨医院污水处理方案

30万吨合成氨联产50万吨尿素项目

一、 项目概况

本项目是以煤为原料生产合成氨联产尿素(氮肥),合成氨是生产氮肥和磷肥的中间产品。近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流。目前合成氨产量规模以中国、俄罗斯、印度等国最大,约占世界总产量的一半以上。合成氨主要原料有天然气、石油、重质油和煤等,但是自从石油涨价后,由煤制氨法重新受到重视,因从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍。另从氮肥产品结构看,由于原来生产碳铵的中氮肥厂转产尿素,使尿素产品成为主要产品,因而煤制氨-尿素厂在氮行业中占主要地位。

二、 国内外生产消费情况及需求预测 国内生产能力现状

中国合成氨工业经过40多年的发展,产量已跃居世界第一位,2004年产量达4222万吨,目前我国合成氨生产设备是大、中、小规模并存,总生产能力为4.4×107吨/年。目前我国已投产的在大型合成氨设备有30套,设计总能力为1.8×107吨/年,实际生产能力为2.0×107吨/年,约占我国合成氨总生产能力的23%。中国内地中型合成氨生产设备有48套,生产能力为9.2×107吨/年,约占我国合成氨总生产能力的11%,我国小型合成氨设备有500多套,生产能力为5.6×107吨/年,约占我国合成氨总生产能力的66%。中国合成氨生产主要集中在华东、华南及华北地区,合成氨产量分别占全国总产量的29.46%、23.73%和16.15%。

国内市场供需情况分析及预测

2000年中国合成氨产量为3.3×107吨/年,进口量为9.2×105吨,出口量为1.34×106吨。2004年中国合成氨产量为4.2×107吨,进口量为6.29×104吨,出口量为零,1995—2004年中国大陆合成氨表观需求量为年均增长4.83%。预计2006年对合成氨的需求量将达到5670万吨,现在生产只能满足70%的国内需求。

1 氮肥生产是合成氨主要需求领域。2004年我国氮肥生产量(折N100%)为3.7×107吨,所消费合成氨约占我国合成氨总需求量的90.1%,其中尿素为2.4×107吨。

国外市场供需情况分析及预测

由于过去几年合成氨产能的削减,全球合成氨市场目前供求趋紧,2004年美国合成氨生产装置的开工率已处于90%的高位。未来几年全球合成氨市场需求有望以年均1.3%的速度增长,这种需求的良好增长使2004年合成氨价格上涨了约17%。

2003年全球合成氨产能为1.28亿吨,同年的市场需求量为1.4亿吨,其中尿素占22.5%,直接用作肥料的占20.4%,磷酸二氢氨占17.5%,硝酸占10.9%,硝酸铵占7.3%,用作化学品占5.1%,硫酸铵占3.6%,其他用途占12.7%。

三、 生产工艺及流程

(一) 合成氨工艺流程及概述

工艺流程大概可以分为:原料气的制备;原料气的净化;气体压缩和氨的合成四大部分

1、 原料气的制备

目前我国煤焦制氨采用的气化技术主要有固定床间歇气化、水煤浆加压气化两种。

该项目拟采用德士古水煤浆气化技术。德士古水煤浆气化是一种以水煤浆和氧气为进料的加压气流床气化工艺,主要工艺特点有:

(1) 煤种适应性较广,可以使用高硫、高灰分获得高纯还原气; (2) 碳转化率高(94—99%);

(3)气化炉的气化及净化系统压力高(2.5—20MPa),所以设备十分紧凑;气化炉结构简单,无运动部件,核心部件是水煤浆氧燃烧喷枪,气化炉工作稳定,单炉作业率可达85%,有备用炉保证维修时作业率可达95%—99%,影响德士古操作和气化的主要工艺指标为水煤浆浓度、氧煤比和气化炉操作压力;

2 (4)德士古煤气化炉的另一个显著特点是环保效果好,由于气化炉内温度高达15000C,因此煤气中不含焦油,与传统的煤气化方法相比,德士古气化法排放的CO2减少40%,NOX减少了86.2%,SO2减少了81.2%,因此,这是一种适合我国国情的洁净煤气技术。

2、原料气的净化

在制得的原料气中,除有用成分氢和氨外,还有不同数量的H2S、有机硫化物、CO

2、CO等,为此必须将原料气进行净化。

3、气体的压缩

原料气的净化和氨的合成都必须在加压和高温中进行。必须使用原料气压缩机、循环压缩机和氨压缩机等进行压缩。压缩机的类型很多,但在合成氨生产过程中一般常用的都是往复式压缩机。如氢氮压缩机大多采用H22和3D22等系列。

4、氨合成

氨合成丛压力来分有高压法、中压法、低压法三种,我国目前煤焦制氨的34家合成氨厂均采用中压法,其合成压力除大化肥厂为26MPa外,其他均为31.4MPa。

合成塔的直径一般为Φ800—Φ100mm,但大多数为Φ1000mm。只有大化肥厂采用德国的Krnp公司的Φ1300mm的合成塔。至于合成塔的台数主要根据各厂的实际情况来定。

(二) 尿素生产工艺流程及概述

制造尿素的方法有50余种,但实现工业化的只有氢氨化钙(石灰氮)法,和氨与CO2直接合成法两种。

合成氨生产为氨与CO2直接合成尿素技术提供了氨和CO2,因原料获得方便,产品浓度高,现在广泛采用此法生产尿素。我国尿素生产主要采用水溶液全循环法。

水溶液全循环法是将未反应的氨和CO2用水吸收生成甲胺或碳酸铵水溶液循环返回系统。我国在煤焦制氨—尿素厂26家中有22家均采用水溶液全循环法。采用Φ1400mm的尿素合成塔,Φ9000—1600mm的自然

3 通风造粒塔。

工业上由NH3与CO2直接合成尿素分下列四个步骤进行: (1) NH3与CO2的原料供应及净化 (2) NH3与CO2合成尿素

(3) 尿素熔融业与未反应生成尿素物质的分离和回收。 (4) 尿素溶液的加工

一般来说,上述四个步骤中,第一步和第二步除工艺条件稍有差别外,在设备构造和操作原则上几乎差不多。第四步尿素溶液加工,实际上是尿素溶液浓缩结晶造粒生产尿素颗粒成品或液态尿素的过程。造粒塔排放的粉尘和NH3会对大气环境造成污染,但对水环境不会有很大的影响。第三步差异较大,在合成尿素工艺流程分类时,是按第三步来分,大致分为不循环法、部分循环法、半循环法和全循环法。即将NH3与CO2在尿素合成系统中循环使用。气提法是全循环法的发展。在简化流程、热能回收,延长运转周期和减少费用等方面较水溶液全循环法优越。目前我国中氮尿素厂生产方法以水溶液全循环法为主,并引进了氨气和CO2气提法。

四、 产业优势

三门峡位于河南省西部,煤炭资源丰富,煤田面积368平方公里,保有储量18亿吨,远景储量27亿吨,居河南省第二位,现有生产能力3000万吨/年,主要煤种为长焰煤、焦煤等,具有挥发分高、活性好、低硫磷等特点,是煤化工产业理想的原料用煤。到2010年,煤炭产量将达到5000万吨,可以为本项目提供充足的原料保障。

五、 投资估算及经济效益

项目总投资11亿元,建成后年均销售收入7.8亿元,年利税2.8亿元,投资利润率13.5%,投资回收期6.88年。

第二篇:年产30~120万吨大型矿渣粉磨生产线

LGM|LGMS立磨

年产30~120万吨大型矿渣粉磨生产线

洛矿从 上世纪九十年代起开始与国外公司合作制造立磨,进入本世纪合作制造的范围和深度不断增加,是世界上生产立磨类型、品种、规格和数量最多的设备制造厂,也是 了解和掌握各种机型技术最全面的厂家(接触使用和学习了大量国外立磨的图纸资料和标准文件、检验文件)。从2001年开始洛矿根 据市场需求和企业产品发展的需要,成立了大型立磨研发专项课题组,进行立磨产品的开发研制工作,在研究国外各种机型的基础上结合中国的实际情况确定了自主 开发的立磨机型,进行创新性研究,开发设计出具有自主知识产权的LGM系列矿渣立磨和水泥原料立磨,可分别配备年产60万吨矿渣粉磨线和日产5000吨水 泥生产线,实现一线一磨。我公司开发研制的大型立式行星减速机,采用国际上最前沿技术,一级伞齿轮二级行星,传动精度高,受力均衡,承载能力大。产品已投入生产运行,配备我公司生产的水泥原料立磨和矿渣立磨,并为进口立磨配套。

洛矿已经掌握了大型立磨的开发设计技术和生产制造技术,具体可概括为:

1)掌握了大型立磨系统工艺参数计算、主机设备工作参数计算、系统工艺配置、产品设计和制造、液压传动技术、自动化控制技术等,可开发设计和制造机、电、液和包括主减速机在内完整配套的大型立磨。 2)可以进行系统热平衡计算,可以对磨内喷吹环、磨盘表面、选粉机叶片处进行流体场计算。

3)通过多年实践,已经建立了完善的立磨制造、装配、检验标准与规范,而且是符合国际先进标准要求并被世界各地用户认可。

4)通过近几年技术改造,公司在冶炼、铸锻、热处理、焊接、包括齿轮加工在内的机械加工等方面都达到了国际先进水平,具有制造大型高品质立式磨机的良好条件。 5)经过科研开发,高铬耐磨材料的材质、铸造、热处理,复合辊套堆焊和加工技术已经掌握,产品已用于立磨,效果良好。

配备年产60万吨矿渣粉磨生产线的“LGMS4624矿渣立磨”已开发完成,并已有30多台订货合同,产品已有十几台投入生产运行。生产能力达到90-100t/h。

配备日产5000吨新型干法水泥生产线的“LGM5024水泥原料立磨”已开发完成,并已有多台订货合同,产品已有多台投入生产运行。生产能力达到450-480t/h。

“LGM5024水泥原料立磨”和“LGMS4624矿渣立磨”已累计订货70余台。

2008年开发出更大规格LGM系列的矿渣立磨和水泥原料立磨,配备日产6000吨水泥生产线的“LGM5426水泥原料立磨”和年产120万矿渣粉磨线的“LGMS5725矿渣立磨”, “LGMS5725矿渣立磨”已在营口天瑞投产运行。原料立磨和矿渣立磨已开发出多种规格系列产品。

结合立磨开发,采用目前世界上最先进的技术开发出MZL300、MZL370、MZL480三个规格档次的立式行星减速机,并已投入使用。

近年来同类产品销售业绩

(一)我公司自行研发设计制造的立磨

1 单位

江苏磊达水泥有限公司

江苏鹤林水泥有限公司

柳州钢铁集团公司 辽宁营口华镁有限公司 LGSM4624

签订数量 6

地点 江苏盐城

内容

矿渣立磨(整机,含工艺设计)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 LGSM4624 LGSM4624 LGSM4624

4 1 2 2 1 2 3 2 1 1 1 1 2 1 2 6

江苏镇江 广西柳州 辽宁营口 湖南冷水江 江苏兴澄 山西晋城 河南南阳 营口、天津 山西新绛 山西长治 昆明 信钢 江门 浩良河 广东焦岭

内蒙乌海、阿荣旗、清水河 长春、哈尔滨

矿渣立磨(整机) 矿渣立磨(整机) 矿渣立磨(工程总包) 矿渣立磨(整机) 矿渣立磨(工程总包) 矿渣立磨(整机,含工艺设计) 矿渣立磨(整机,含工艺设计) 矿渣立磨(整机,含工艺设计) 矿渣立磨(整机) 矿渣立磨(整机) 矿渣立磨(整机) 矿渣立磨总包

矿渣立磨(整机,含工艺设计) 矿渣立磨 原料立磨(整机) 原料立磨(整机) 冷水江钢铁集团公司 LGSM4624 江苏兴澄特钢集团公司

山西晋城钢铁公司 河南南阳汉冶钢铁公司

天瑞水泥集团 山西威顿 长治华泰 昆明兰林 信阳钢厂 广东江门 佳木斯浩良河 广东塔牌集团 内蒙蒙西水泥集团公司

吉林亚泰水泥集团公司 LGSM5725 LGSM4624 LGSM4624 LGSM5725 LGSM4624 LGSM4624 LGSM3218 LGSM3218 LGSM4624 LGSM4624 LGM5024 LGM5024 18 LGM5024 5 原料立磨(整机) 19 20 21 22 23 昆钢嘉华水泥有限公司

山东水泥集团公司 昌兴矿业集团 福建永安万年水泥公司 锦信集团

江苏磊达水泥有限公LGM5024 LGM5024 LGM5024 LGM5024 LGM5024 2 4 6 1 2 云南昆明 山东沂水、安丘

原料立磨(整机) 原料立磨(整机)

重庆、太原、辽宁 原料立磨(整机) 福建永安 河南禹州 原料立磨(整机) 原料立磨(整机) 24 司

25 内蒙乌兰水泥集团公司

26 江苏红狮集团 27 佳木斯北方水泥 28 澳水集团 29 华润集团 30 比那尼水泥 31 金峰水泥集团

LGM5024

2 LGM5024 1 LGM5024 4 LGM5024 1 LGM5024 2 LGM5024 2 LGM4521 2 LGM5024 2 合计 72

江苏、安徽

内蒙集宁 江苏、福建、四川 佳木斯 广东、广西 广西 山东日照 江苏溧阳

原料立磨(整机)

原料立磨(整机)

原料立磨(整机) 原料立磨(整机) 原料立磨(整机) 原料立磨(整机) 原料立磨(整机) 原料立磨(整机)

第三篇:新东谷年产30万吨面粉项目建设情况汇报

新东谷年产30万吨面粉项目由滕州市新东谷面粉有限公司投资建设。滕州市新东谷面粉有限公司是枣庄地区最大的集科研、优质麦种植、仓储、面粉加工、物流、销售为一体的省级农业产业化龙头企业,拥有“中国名牌”、“山东省著名商标”。项目总投资1.8亿元,用地面积100亩,建筑面积63560平方米,分两期建设。一期工程投资9600万元,2013年3月份开工,建设1.6万平方米的面粉加工车间和成品库、2600平方米的办公楼,新上世界先进的意大利制粉生产线2条,计划2013年12月份建成投产;二期工程投资8400万元,在一期工程投产后开工,建设9000平方米的挂面生产车间、1.1万平方米的饲料生产车间、24960平方米的综合办公楼,新上2条挂面生产线、1条饲料生产线,计划2014年12月份建成投产。项目全部建成投产后,日可处理小麦1000吨,年可生产面粉30万吨、挂面3万吨、饲料4万吨、谷朊粉6万吨,年实现销售收入9亿元,税收4000万元,安排就业600人,对于拉长我市食品加工产业链条,打造百亿元食品加工产业集群必将产生积极的促进作用。

项目开工建设以来,在市委、市政府领导的关心支持下,在全市各业务局的共同帮助下,项目迅速完成了一期1.6万平方米的面粉加工车间主体和成品库,2600平方米的办公楼,二期挂面车间和饲料车间已筹备建设。

存在的主要问题:

1、土地有60亩的缺口需要及时解决。

2、请领导协调铺设热力管网。

下一步工作打算:

加快项目建设进度,确保今年六月份一期工程全面竣工投产。二期挂面和饲料生产车间工程已筹备建设完成,尽早开工建设。

第四篇:2万吨污水处理厂投资估算

2万吨/日污水处理厂工程投资估算表

序号 项目费用名称 建筑工程 设备费 安装费 合计

A 第一部分工程费用 785.5 723.3 112.2 2067 — 污水处理厂 785.5 711.2 112.2 2036.9 1 粗格栅间及进水泵房 24.0 87.0 5.70 1466.7 2 细格栅及旋流沉砂池 17.0 41.0 4.90 62.9 3 配水井 1.20 2.70 0.50 4.4 4 厌氧池 6.30 7.0 0.80 14.1 5 氧化沟(2座) 393.5 270.0 24.5 663.5 6 二沉池(2座) 214.6 76.0 9.20 299.8 7 集泥井及回流污泥泵房 15.0 21.0 4.2 40.2 8 消毒池及加氯间 26.2 24.0 2.4 52.6 9 储泥池 2.10 2.50 0.40 5 10 污泥脱水间 9.50 92.0 9.20 110.7 11 污泥堆棚 4.10 8.0 0.80 12.9 12 配电间 10.5 85.0 12.3 107.8 13 仪器仪表及自控系统 94.0 4.8 98.8 14 化验设备 55.0 55 15 通讯设备 3.0 3 16 运输设备 30.0 30 17 厂区平面布置 25.0 25.0 75.0 18 厂区土方及地基处理 60 120 19 综合楼 48.0 48 20 传达室、大门 8.0 8 21 机修间、仓库 21.0 20.0 41 22 食堂、浴室、职工宿舍 24.0 24 23 车库 3.00 3 24 围墙 20.0 20 25 厂区道路及照明 30.0 7.50 37.5 26 厂区绿化 10.0 10.0 二 备品备件购置费 17.10 17.10 三 工器具及生产家具购置 15.0 15.0

B 第二部分工程建设其它费 447.35 1 征地费 120 2 厂内绿化 40 3 建设单位管理费 56.0 4 办公用品及家具购置费 2.0 5 生产人员培训费 7.20 6 建设监理费 40.6 7 勘测费 4.70 7 设计费 51.2 51.2 8 施工图预算编制费 25.12 25.12 9 竣工图编制费 12.60 12.60 10 工程保险费 8.50 8.50 11 联合试运费 10.23 10.23 12 公司招投标费 18 18 13 环评费 12 12 14 前期工作费 40 40

C 基本预备费 200 200

工程静态投资A+B+C 2714.25

第五篇:30t垃圾渗滤液处理工程初步设计方案

第一章设计参数

1.1

设计规模

日处理垃圾渗滤液720m3,小时处理量30m3/h。

1.2设计原水水质

表1-1

单位:毫克/升(pH除外)

项目

CODcr

BOD5

PH

SS

NH3-N

浓度

4500

2000

8.3

10260

1800

1.3

设计出水水质

表1-2

单位:毫克/升(pH除外)

项目

CODcr

BOD5

pH

SS

NH3-N

限值

≤200

≤100

6~9

≤300

20

第二章

污水处理站设计原则

2.1

污水处理设计原则

(1)认真贯彻国家关于环境保护工作的方针和政策,使设计符合国家的有关法规、规范、标准。

(2)综合考虑废水水质、水量随季节性变化的特征,选用的工艺流程技术先进、稳妥可靠、经济合理、运转灵活、安全适用。

(3)污水处理站总平面布置力求紧凑,减少占地和投资。

(4)妥善处置污水处理过程中产生的污泥和其他栅渣、沉淀物,避免造成二次污染。

(5)污水处理过程中的自动控制,力求管理方便、安全可靠、经济实用,提高管理水平,降低劳动强度。

(6)污水处理设备,要求采用技术成熟、高效率低能耗、运行可靠的产品,部分关键设备可考虑从国外知名品牌。

(7)优化处理工艺,减少投加药剂量,节约运行成本。

(8)严格按照招标文件界定条件进行设计,适应项目实际情况要求。

(9)积极创造一个良好的生产和生活环境,把污水处理站设计成一个花园式的处理厂,绿化面积超过40%。

2.2

污泥处理设计原则

(1)根据污水处理工艺,按其产生的污泥量、污泥性质,结合自然环境及处置条件选用符合实际的污泥处理工艺。

(2)采用合适的脱水、浓缩方法,脱水后送填埋场填埋。

(3)妥善处置污水处理过程中产生的栅渣、垃圾、沉砂和污泥,避免二次污染。

第三章

渗滤液处理工艺

3.1工艺流程

针对本工程垃圾渗滤液水质特点,经精心计算,优化设计,本初设方案选用的处理流程图(见下页)。

3.2工艺流程简述

垃圾填埋区产生的垃圾渗滤液经专用的收集管道汇入调节池,调节池前设细格栅,对渗滤液中的部分颗粒物质进行过滤,渗滤液在调节池中得到均质均量。从调节池中流出的污水经提升泵提升至混凝沉淀池,在混凝沉淀池加混凝剂和絮凝剂,使SS得到大量的去除。混凝沉淀池出水进入氨氮吹脱池,将pH调制碱性,并控制一定的温度,可以使氨氮去除率达到较高水平。出水需调节pH值至6.5~7.8,然后进入UASB厌氧反应器。污水经UASB厌氧反应器厌氧处理后,进入A/O反应器。A/O生物接触氧化池充分实现去除有机物和脱氮的功能。MBR系统内置于A/O池后,MBR出水达到排放标准后排放。

UASB厌氧反应器、A/O生物接触氧化池产生的剩余污泥进入污泥浓缩他,经浓缩处理后的污泥由螺杆泵统一送到填埋区填埋。浓缩池上清液回流至调节池。

第四章

主要构筑物、设备工艺技术参数

4.1

细格栅

水量总变化系数KZ为2.1,设计水量为30/3600*2.1=0.0174m/s。

栅条间隙取e=1mm,安装倾角а=75度,栅前水深h=0.5m,过栅流速v=0.9m/s。

栅条数n==38条

栅槽有效宽度:B=S(n-1)+en=0.01*37+0.001*38=0.408m,取0.41m,栅槽宽度取0.5m。

过栅水头损失:=0.385m

栅槽高度:H=h+h1+h2=0.5+0.385+0.3=1.185m,其中h2为栅前渠道超高,取0.3m。

栅槽总长度:L=l1+l2+1.0+0.5+,l1=,l2=。

其中,l1——进水渠道渐宽部分长度,m。

l2——栅槽与出水渠连接渠的渐缩长度,m。

H1——栅前槽高,m,

——进水渠展开角,一般用

B1——进水渠道宽度,m,这里取0.3m。

则,L=++1.0+0.5+=++1.5+≈2.13m

设计格栅渠尺寸:2.13*0.5*1.185m。

4.2

调节池

4.2.1

调节池

停留时间:48h

池体尺寸:12*12*10.5m,有效水深10m。数量:1座。

4.2.2

潜水搅拌机

1台,直径:10m

4.2.3

提升泵:

流量:35m3/h

扬程:20m

数量:2台(1用1备)

4.3两级混凝沉淀池

混凝沉淀设计两级,两级相同。每级设计如下:

4.3.1反应区

添加药剂:PFS、PAM、PAC

接触时间:60min

V=30*1=30m3

反应区分三格,每格尺寸2.0*3.5*2.2m,有效水深1.8m。

三格每格添加一种药剂,每种药剂接触时间为60*(2.0*3.5*1.8)/30=28min

4.3.2沉淀区

采用竖流沉淀池。

参数选取:

中心管流速ν0:20mm/s

中心管面积f1:q/ν0=0.42m2

中心管直径d1:0.73m

污水在沉淀区上升流速ν:0.5mm/s

沉淀时间:2h

沉淀池有效高度:h=3600*0.0005*2=3.6m

间隙流出速度ν1:30mm/s

中心管到反射板之间的间隙高度:q/(ν1*π*d1)=0.09m

缓冲层高:0.4m

沉淀池面积f2:q/ν=30/3600/0.0005=16.67m2

沉淀池面积A:f1+f2=17.09m2

沉淀池直径D:4.67m

污泥斗:倾斜角取60度,截头直径0.2m

污泥斗高度:(D-0.2)/2*tan60=3.87m

沉淀池总高度:0.3+3.6+0.09+0.3+3.87=8.16m

4.4吹脱塔

4.4.1进水pH调节池

停留时间:1h,将pH调制11左右。

直径3.6m,有效深度3m,超高0.5m。

潜水搅拌机:

直径:1.5m

加药:CaO

加药泵:1台。

提升泵:流量:30m3/h,扬程:10m,数量:2台(1用1备)

4.4.2吹脱塔

吹脱塔是利用吹脱去除水中的氨氮,在塔体重,使气液相互接触,使水中的游离氨分子穿过气液界面向气体转移,从而达到脱氮的目的。要想使更多的氨被吹脱出来,必须使游离氨的量增加,则必须将进入吹脱塔的pH调制碱性,所以在进入吹脱塔之前将pH调制11。吹脱塔内水从塔顶送入,向下喷淋,空气从塔底送入。

设计参数:设计淋水密度为100m3/m2.d,汽水比为2500m3/m3。

设计计算:

(1)

吹脱塔截面积=设计流量/设计淋水密度=7.2m2

(2)

吹脱塔直径=3m

(3)

空气量=30*2500/3600=21m3/s

(4)

填料高度:采用填料高度5m,考虑安全系数1.5,填料高度为7.5m。

4.4.3出水pH调节池

停留时间:1h,将pH将至8左右。

直径3.6m,有效深度3m,超高0.5m。

潜水搅拌机:直径:1.5m

加药:盐酸或硫酸。

加药泵:1台。

4.5

UASB厌氧反应器

4.5.1

UASB厌氧反应器

有效容积计算:

采用颗粒污泥,设计容积负荷:NV=6kgCOD/m3.d

预计去除率80%

有效容积:设计流量*(进水COD-出水COD)/容积负荷=432m3

设置有效高度为4m,两座,则有效面积为432/2/4=54m2。设置长宽比为2:1,则长和宽分别为:10.4m、5.2m。

顶隙约为总体积的10%,则有效高度为总高度的90%,总高度为:4/0.9≈4.45m。

设计尺寸:10.4×5.2×4.45m。

结构:钢砼。

数量:

2座。

水力停留时间:16h。

三相分离器。

4.5.2沼气回收利用系统

阻火柜:2套

脱硫器:1套

储气罐:按每去除1kgCOD产生0.5m3沼气计算,每天沼气产量为4.5*30*24*0.5=1152m3,按0.5d储气量设计储气罐,每套290m3,2套。

气水分离器:1套。

沼气、油两用锅炉:

1台

4.6缺氧接触氧化池

缺氧池停留时间按1.2d设计。

有效池容为:30*1.2*24=864m3

设计尺寸:10*10*9m。

4.7好氧接触氧化池

1.

按脱氮计算:(氨氮吹脱去除率按80%计算)

好氧接触氧化池进水氨氮浓度约为360mg/l,氨氮去除率按90%设计,则出水氨氮浓度为36mg/l。其中凯氏氮浓度和氨氮浓度的比例约为0.6:1。设计填料容积负荷MN为0.7kgTKN/(m3填料.d),选择悬挂填充,填充率为50%。

则好氧接触氧化池的有效容积为:

=1064.7m3

取1065m3

停留时间:=1.48d

2.按去除有机物计算:

UASB出水BOD5按800mg/l,好氧池设计去除率90%,则出水BOD5为80mg/l。设计五日生化需氧量容积负荷为2kgBOD5/(m3填料.d),悬挂填充率为50%。

则好氧池有效容积为:=518.4m3。

二者相比按脱氮所需池容更大,因此取好氧接触氧化池有效容积为1065m3。

设计尺寸:10*10*11m,有效高度10.65m。

混合液回流比:300%。

混合液回流泵:1台,100m3/h。

曝气机1台。

4.8

MBR膜池

1.池容计算

设计进出水BOD5分别为200mg/l、100mg/l。五日生化需氧量污泥负荷0.1kgBOD5/(kgMLSS.d),混合液挥发性悬浮固体浓度为8000mg/l。

则MBR有效容积为:

=128.6m3

取值130m3

设计尺寸:5.0*5.0*6.0m。

4.9

污泥浓缩池

污泥的产生主要在混凝沉淀池和生物反应池后,生物反应UASB产生的污泥量,MBR产生的污泥量极少。

4.9.1混凝沉淀池污泥量计算

P2——污泥含水率,取95%。

=138.24m3/d

≈6m3/h

4.9.2

UASB污泥量计算

(1)反应器中污泥总量计算

厌氧污泥平均浓度按15VSS/l,则污泥总量为:427*15=6405kg/d

(2)

产泥量计算

污泥产量取0.08kgVSS/kgCOD,进水COD浓度4500mg/l,去除率70%,污泥含水率为98%,污泥浓度为1000kg/m3。

产泥量为:0.08*30*24*4.5*0.7=181.44kg。

则污泥产量为:181.44/(1000*(1-0.98))=9.1m3/d≈0.38m3/h。

4.9.3MBR污泥量计算

因进水COD很小,MBR污泥量产生量可基本忽略。

4.9.2污泥浓缩池设计

设计浓缩时间6h,则浓缩池池容为:6*(6+0.38)=38.28m3

设计有效池容40m3

C0取96%,污泥固体通量采用40kg/m2.d。

则,浓缩池面积为:S==14.7m2

(二)

浓缩池直径

D==4.33m

(三)

浓缩池深度

浓缩时间t:6h

有效高度h2===2.51m

设超高h1=0.3m,缓冲层高h3=0.3m,池底坡度1/20,污泥斗上底池径2.0m,下底池径1.0m,则池底坡度造成的深度h4为:h4==0.058m

污泥斗高度h5:=0.71m

则浓缩池深度为:H=h1+h2+h3+h4+h5=0.3+2.51+0.3+0.058+0.71=3.878m。

仅供参考

上一篇
下一篇
返回顶部