范文网 论文资料 八上全等三角形证明题(精选)

八上全等三角形证明题(精选)

八上全等三角形证明题第一篇:八上全等三角形证明题八上全等三角形课件三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等。

八上全等三角形证明题

第一篇:八上全等三角形证明题

八上全等三角形课件

三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。下面是小编为你带来的八上全等三角形课件 ,欢迎阅读。

1全等三角形

形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形(congrucnt figures).能够完全重合的两个三角形叫做全等三角形(congruent trangles).

平移、翻折、旋转前后的图形全等。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

假设:△ABC 和 △DEF 全等,则记作 △ABC ≌ △DEF

全等三角形的性质:

全等三角形的对应边相等,全等三角形的对应角相等。

2 三角形全等的判定

判定的方法:

1.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)。

2.两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。

3.两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)。

4.两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”)。

Tips:“角角边”的判定方法是基于“边角边”的简化版,因为两内角相等,则第三内角必定相等(三内角和等于180度)。

5.斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。

3 角的平分线的性质

如何做角平分线?

假设有∠AOB

1.先取圆规设置固定长度,在OB和OA上画出点N和M。

2.在将圆规长度设为M到N长度的一半及以上。

3.使用圆规分别以N、M为圆心画出两条适当长度的弧,并取得交点P

4.连接OP,即为角平分线。

角的平分线的性质:

1.角的平分线上的点到角的两边的距离相等。

Tips:”点到线的距离“指的是垂线长度,而不是任意线段长度。

2.角的内部到角的两边的距离相等的点在角的平分线上。

第二篇:全等三角形证明题

1B

E

5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.

求证:BEDG.

A B

G F

AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求

证:ACCD.

2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B

F

C

A

D

C

6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.

D

(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.

AD

E

C

B

3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.

A

B

D

全等三角形证明题

21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.

A

E

C

2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.

4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.

F G

C

B

E

A

C

B

C

,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE

BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.

全等三角形证明题

31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.

D

C

B E C

F

4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,

AE=CF. 求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.

D

E

B

5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全

A

等的过程.

C

3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线

BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF. 求证:(1)△ABE≌△CBF;(2)FC⊥AC.

D

D

E

6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE

交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.

4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF

DEF

AB C

E

B

C

F

第三篇:全等三角形证明题09

全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线.

① 求证:OA=OB=OC.

② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明.

M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明.

⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E.

① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明.

B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC, CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由.

G B F

C E

D A

全等三角形证明题09 ⑷ 探求规律.

① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN.

② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN.

③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN.

④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN.

⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明).

⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由.

E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2

第四篇:全等三角形证明经典题

1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

D C

2.已知:D是AB中点,∠ACB=90°,求证:CD1AB

23已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

4已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

5已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

C

F

6已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

7 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。

8.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠

9.已知:AB=CD,∠A=∠D,求证:∠B=∠C

10.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

11.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

D

D

12已知,E是AB中点,AF=BD,BD=5,AC=7,求DCC

13.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.14.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

求证:∠OAB=∠OBA

15.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长

F线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

16、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

B

F

B

E

A

C

M

C

E

17.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.18.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.

19.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.

20.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.

21.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 求证:DE=DF

D

C B E

A

A

C

22.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC

C

23如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF

F

C24如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证: (1)AM=AN;(2)AM⊥AN。

25.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF

26、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CDDA

BC

27.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC

=∠BDE.

图9

E

B

第五篇:全等三角形的经典证明题

1、如图,已知AB=DE,BC=EF,AF=DC。

求证:∠EFD=∠BCA

2、如图,已知: AD是BC上的中线 ,且DF=DE.

求证:BE∥CF.

3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.

AG

F

AFD

BEDC

4、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.

5、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。 (1)∠DBH=∠DAC;

(2)ΔBDH≌ΔADC。 E

6、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

7、如图(1),(1) 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且

B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E

试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.

DC

八上全等三角形证明题(精选) 论文资料 第1张
八上全等三角形证明题(精选).docx
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 八上全等三角形证明题(精选) 论文资料 第2张 八上全等三角形证明题(精选) 论文资料 第2张 八上全等三角形证明题(精选) 论文资料 第2张 八上全等三角形证明题(精选) 论文资料 第2张 八上全等三角形证明题(精选) 论文资料 第2张
八上全等三角形证明题(精选) 论文资料 第7张 点击下载文档文档为doc格式
上一篇
下一篇
返回顶部