八上全等三角形证明题
第一篇:八上全等三角形证明题
八上全等三角形课件
三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。下面是小编为你带来的八上全等三角形课件 ,欢迎阅读。
1全等三角形
形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形(congrucnt figures).能够完全重合的两个三角形叫做全等三角形(congruent trangles).
平移、翻折、旋转前后的图形全等。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
假设:△ABC 和 △DEF 全等,则记作 △ABC ≌ △DEF
全等三角形的性质:
全等三角形的对应边相等,全等三角形的对应角相等。
2 三角形全等的判定
判定的方法:
1.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
2.两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
3.两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
4.两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
Tips:“角角边”的判定方法是基于“边角边”的简化版,因为两内角相等,则第三内角必定相等(三内角和等于180度)。
5.斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
3 角的平分线的性质
如何做角平分线?
假设有∠AOB
1.先取圆规设置固定长度,在OB和OA上画出点N和M。
2.在将圆规长度设为M到N长度的一半及以上。
3.使用圆规分别以N、M为圆心画出两条适当长度的弧,并取得交点P
4.连接OP,即为角平分线。
角的平分线的性质:
1.角的平分线上的点到角的两边的距离相等。
Tips:”点到线的距离“指的是垂线长度,而不是任意线段长度。
2.角的内部到角的两边的距离相等的点在角的平分线上。
第二篇:全等三角形证明题
1B
E
5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.
求证:BEDG.
A B
G F
AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求
证:ACCD.
2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B
F
C
A
D
C
6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
D
(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.
AD
′
E
C
B
3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.
A
B
D
全等三角形证明题
21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.
A
E
C
2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.
F G
C
B
E
A
C
B
C
,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE
BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.
全等三角形证明题
31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.
D
C
B E C
F
4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,
AE=CF. 求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.
D
E
B
5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全
A
等的过程.
C
3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线
BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF. 求证:(1)△ABE≌△CBF;(2)FC⊥AC.
D
D
E
6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE
交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF
DEF
AB C
E
B
C
F
第三篇:全等三角形证明题09
全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线.
① 求证:OA=OB=OC.
② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明.
M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明.
⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E.
① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明.
B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC, CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由.
G B F
C E
D A
全等三角形证明题09 ⑷ 探求规律.
① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN.
② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN.
③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明).
⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由.
E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2
第四篇:全等三角形证明经典题
1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
D C
2.已知:D是AB中点,∠ACB=90°,求证:CD1AB
23已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
4已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
5已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
C
F
6已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
7 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
8.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠
9.已知:AB=CD,∠A=∠D,求证:∠B=∠C
10.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB
11.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE
D
D
12已知,E是AB中点,AF=BD,BD=5,AC=7,求DCC
13.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.14.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.
求证:∠OAB=∠OBA
15.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长
F线垂直于过C点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE.
16、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
B
F
B
E
A
C
M
C
E
17.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.18.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.
19.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.
20.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.
21.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 求证:DE=DF
D
C B E
A
A
C
22.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC
C
23如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
F
C24如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证: (1)AM=AN;(2)AM⊥AN。
25.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF
26、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CDDA
BC
27.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC
=∠BDE.
图9
E
B
第五篇:全等三角形的经典证明题
1、如图,已知AB=DE,BC=EF,AF=DC。
求证:∠EFD=∠BCA
2、如图,已知: AD是BC上的中线 ,且DF=DE.
求证:BE∥CF.
3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.
AG
F
AFD
BEDC
4、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.
5、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。 (1)∠DBH=∠DAC;
(2)ΔBDH≌ΔADC。 E
6、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
7、如图(1),(1) 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且
B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E
试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.
DC