范文网 论文资料 初中数学课堂教学设计(全文)

初中数学课堂教学设计(全文)

初中数学课堂教学设计第一篇:初中数学课堂教学设计初中数学教学设计教案设计者:赵波学科:数学 年级:七年级 课题名称:§1。8 完全平方公式(1)一、 内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公。

初中数学课堂教学设计

第一篇:初中数学课堂教学设计

初中数学教学设计

教案设计者:赵波

学科:数学 年级:七年级 课题名称:§1。8 完全平方公式(1)

一、 内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。

②合并同类项法则的正确应用。

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从特殊性的计算上升到一般性的规律,得出公式,并能正确的应用公式。

三、 教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推理能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

3、了解(a+b)2=a2+2ab+b2的几何背景。

(二)知识与技能:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。

(三)数学思考:能收集、选择、处理数学信息,并做出合理的推断 或大胆的猜测;

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同 角度寻求解决问题的方法,并能有效地解决问题,通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难勇气和运用知识解决问题的成功体验,有学好数学的自信心;体验数、符号和图形是有效的描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性;在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。

四、 教学重点;完全平方公式的准确应用。

五、 教学难点;掌握公式中字母表达式的意义及灵活运用公式进行计算。

六、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,作学生健康心理、健康品德的促进者、催化剂。通过恰当的教学方式引导学生学会自我调适,自我选择。

学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、归纳、应用等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程,反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。 (3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

七、 教学媒体:投影仪

八、 教学和活动过程:

1、整个教学过程叙述:

教材“完全平方公式”内容共含两课时。本节是其中的第一课时,需40分钟完成。

2、具体教学过程设计如下: 〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?

(x+3)2=_______________,(x-3)2=_______________, 这些式子的左边和右边有什么规律?再做几个试一试: (2m+3n)2=_______________,(2m-3n)2=_______________, 〈二〉、分析问题

1、[学生回答] 分组交流、讨论 多项式的结构特点

(2m+3n)2= (2m)2+2·2m·3n+(3n)2 =4m2+12mn+9n2, (2m-3n)2= (2m)2-2·2m·3n+(3n)2 =4m2-12mn+9n2, (1)原式的特点。两数和的平方。

(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍 (3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式: (a+b)=a+2ab+b; 2

22(a-b)=a-2ab+b.

4、完全平方公式的几何背景:

用不同的形式表示图形的总面积 并进行比较,你发现了什么? (a+b)2=a2+2ab+b2

你能运用公式计算下列各式吗? 22

2b a a b (-x-3)2=______________, (-x+3)2=_______________。 (-2m-3n)2=______________,(-2m+3n)2=_______________。 上面各式的计算结果: (-x-3)2=(-x)2-2·(-x)·3+32 =x2+6xn+9___, (-x+3)2=(-x)2+2·(-x)·3+32 =x2-6x+9____。 (-2m-3n)2=(2m)2-2·(-2m)·3n+(3n)2 =4m2+12mn+9n2,

a (-2m+3n)2=(2m)2+2·(-2m)·3n+(3n)2 =4m2-12mn+9n2。

你从上面的计算结果中发现了什么规律?根据这个规律,完全平方公式又如何叙述?

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________, (m-n)2=_______________, (-m+n)2=____________, (-m-n)2=______________, (a+3)2=______________, (-c+5)2=______________, (-7-a)2=______________, (0.5-a)2=______________.

2、判断: ( )① (a-2b)2= a2-2ab+b2 ( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2 ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2 ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ( )⑥ (-a-2b)2=(a+2b)2 ( )⑦ (2a-4b)2=(4a-2b)2 ( )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2 =______________;② (-y-x)2 =_______________; ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________; ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________; ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________. 〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题? (1) 公式右边共有3项。 (2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。 (4)中间项是等号左边两项乘积的2倍。 〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________ (2)(-7-2m) 2 =__________________________________ (3)(-0.5m+2n) 2=_______________________________ (4)(3/5a-1/2b) 2=________________________________ (5)(mn+3) 2=__________________________________ (6)(a2b-0.2) 2=_________________________________ (7)(2xy2-3x2y) 2=_______________________________ (8)(2n3-3m3) 2=________________________________ 〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。 〈七〉[作业] P34 随堂练习 P36 习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

第二篇:初中数学教学设计

初中数学教学设计:圆、扇形、弓形

(二)

教学目标:

1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;

2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;

3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.

教学重点:扇形面积公式的导出及应用.

教学难点:对图形的分解和组合、实际问题数学模型的建立.

教学活动设计:

(一)概念与认识

弓形:由弦及其所对的弧组成的图形叫做弓形.

弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.

(二)弓形的面积

提出问题:怎样求弓形的面积呢?

学生以小组的形式研究,交流归纳出结论:

(1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;

(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

(3)当弓形弧是半圆时,它的面积是圆面积的一半.

理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

(三)应用与反思

练习:

(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;

(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

(学生独立完成,巩固新知识)

3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m)

教师引导学生并渗透数学建模思想,分析:

(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

(2)求截面上有水的弓形的面积为你提供什么信息?

(3)扇形、三角形、弓形是什么关系,选择什么公式计算?

学生完成解题过程,并归纳三角形OAB的面积的求解方法.

反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.

4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求

围成的新月牙形ACED

2的面积S.

解:∵

有∵

, ,

∴ .

组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

(四)总结

1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

2、应用弓形面积解决实际问题;

3、分解简单组合图形为规则圆形的和与差.

(五)作业 教材P183练习2;P188中12.

圆、扇形、弓形的面积(三)

教学目标:

1、掌握简单组合图形分解和面积的求法;

2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;

3、渗透图形的外在美和内在关系.

教学重点:简单组合图形的分解.

教学难点:对图形的分解和组合.

教学活动设计:

(一)知识回顾

复习提问:

1、圆面积公式是什么?

2、扇形面积公式是什么?如何选择公式?

3、当弓形的弧是半圆时,其面积等于什么?

4、当弓形的弧是劣弧时,其面积怎样求?

5、当弓形的弧是优弧时,其面积怎样求?

(二)简单图形的分解和组合

1、图形的组合

让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.

2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.

以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用.

归纳交流结论:

方案1.S阴=S正方形-4S空白.

方案

2、S阴=4S瓣=4 (S半圆-S△AOB)

=2S圆-4S△AOB=2S圆-S正方形ABCD

方案

3、S阴=4S瓣=4 (S半圆-S正方形AEOF)

=2S圆-4S正方形AEOF =2S圆-S正方形ABCD

方案

4、S阴=4 S半圆-S正方形ABCD

„„„„„

反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律.

练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?

分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.

解:连结AO,设P为其中一个三等分点, 连结PA、PO,则△POA是等边三角形.

.

说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.

练习2:教材P185练习第1题

5、 已知⊙O的半径为R.

(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;

(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).

例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能力.

说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积

(三)总结

1、简单组合图形的分解;

2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.

3、进一步理解了正多边形和圆的关系定理.

(四)作业 教材P185练习

2、3;P187中

8、11. 探究活动

四瓣花形

在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图 (1)所示.

再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图 (12)所示.

探讨:(1)两图中的圆弧均被互分为三等份.

(2)两朵“花”是相似图形.

(3)试求两“花”面积

提示:分析与解 (1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.

从而,∠ADP=30°.

同理∠CDQ=30°.故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点.

由对称性知,四段弧均被三等分.

如果证明了结论(2),则图 (12)也得相同结论.

(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图 (1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF =

﹕1.

(3)花形的面积为:

第三篇:初中数学教学设计

课题名称:§8.2 消元—二元一次方程组的解法(1)

一、 内容简介

本节课的主题:通过对前一节具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,引导学生从解方程组的过程中认识、体会消元思想。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①列一元一次方程的技巧。

②消元思想的概念。

③代入消元法的定义。

2、学习者对即将学习的内容已经具备的水平:

通过对方程组中未知数系数的观察,掌握解二元一次方程组的一般思路,找出较简单的解方程组的方法,充分理解应用代入消元法求解方程组。

三、 教学目标及其对应的课程标准:

(一)教学目标: 熟练掌握运用代入消元法解二元一次方程组。

(二)知识与技能:

1、会用代入法解二元一次方程组。

2、初步体会解二元一次方程组的基本思想——“消元”

(三)数学思考: 通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

(四)解决问题: 通过用代入消元法解二元一次方程组的训练及选用合理、简捷的方法解方程组,培养运算能力。

(五)情感与态度: 通过研究问题的方法,培养学生合作交流意识与探究精神。

四、 教学重点;用代入消元法解二元一次方程组。

五、 教学难点;探索如何用代入法将“二元”转化为“一元”的消元过程。

六、 教学和活动过程:

1、整个教学过程叙述:

教材“消元—二元一次方程组的解法”内容共含四课时。本节是其中的第一课时,需40分钟完成。

2、具体教学过程设计如下:

〈一〉、提出问题

[引入]同学们,首先我们看到这样一个问题

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

根据上一节课内容,我们可以设两个未知数:胜x场,负y场,可以

xy22列出方程组2xy40,表示问题中的数量关系。而我们运用上一学

期所学的一元一次方程也可以解决这个问题。如果只设一个未知数:胜x场,可列一元一次方程2x(22x)40。

引导学生思考二元一次方程组和一元一次方程有什么关系?

〈二〉、分析问题适当给予学生一点提示,例如从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察

1、[学生回答]分组交流、讨论 数量关系及结构特点

感觉一元一次方程和方程组中的第二个方程有点相似

二元一次方程组中的y22x

2、[教师总结]这就是我们今天所要学习的消元思想:

这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

3、[教师归纳] 而我们这节课的主要内容就是代入消元法:

上面的解法,是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

〈三〉、运用所学,解决问题

1、把下列方程写成用含x的式子表示y的形式。

(1)2x

(2)3xy3 y10

2、例1用代入法解方程组

xy3. 3x8y14.

3、例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2∶5。某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶? 分析:问题中包含两个条件:

大瓶数∶小瓶数=2∶5,

大瓶所装消毒液+小瓶所装消毒液=总生产量。

可设这些消毒液应该分装x大瓶和y小瓶。根据大、小瓶数的比以及消毒液分装量与总生产量的数量关系,得

5x2y

500x250y22500000解出未知数

〈四〉、[学生小结]

在运用代入法解方程组的过程中,需要注意那些问题?

(1)充分理解消元思想 。

(2) 方程组中未知数的系数 。

〈五〉[作业]P98随堂练习P103 习题1 2

七、课后反思

通过对本节的代入消元法解二元一次方程组进行总结,让学生体会在解方程组中的程序化思想,熟练掌握解二元一次方程组的过程中反映出来的化归思想,为下一节课的内容进行铺垫。

第四篇:初中数学教学设计

一、教学设计:

1、 学习方式:

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2 、学习任务分析:

充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。

3、 学生的认知起点分析:

学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。

4、 教学目标:

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验 5 、教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。

6 、教学过程(略)

教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式

7、反思小结

提炼规律

电脑显示,带领学生复习全等三角定义及其性质。

电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是能否尽可能少吗? 对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。

按照三角形“边、角” 元素进行分类,师生共同归纳得出:

1、 一个条件:一角,一边

2 、两个条件:两角; 两边;一角一边

3 、三个条件:三角; 三边;两角一边;两边一角

按以上分类顺序动脑、动手操作,验证。 教师收集学生的作品,加以比较,得出结论: 只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明:

如老师上课用的三角尺与同学用的三角板三个角分别对应 相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否 板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示:

由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质举例说明该性质在生活中的应用

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)

3 、( 对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。) 教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想 在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:

学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。

想一想:

对只给一个条件画三角形,画出的三角形一定全等吗? 画一画:

按照下面给出的两个条件做出三角形: (1)三角形的两个角分别是:30°,50° (2)三角形的两条边分别是:4cm,6cm (3)三角形的一个角为 30,一条边为3cm

剪一剪:

把所画的三角形分别剪下来。

比一比:

同一条件下作出的三角形与其他同学作的比一比,是否全等。 学生重复上面的操作过程,画一画,剪一剪,比一比。 学生总结出:三个内角对应相等的两个三角形不一定全等

学生举例说明

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

鼓励学生自己举出实例,体验数学在生活中的应用.

学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

学生练习

学生在教师引导下回顾反思,归纳整理。

z+z平台演示

z+z平台演示,教师加以分析。 学生分组讨论,师生互动合作。

经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。 结论很显然只需学生想像即可,z+z平台辅助直观演示。 学生动手操作,通过实践、自主探索、交流,获得新知。

第五篇: 初中数学概念课堂教学设计

摘要:数学概念是数学教材结构的最基本的因素,正确理解数学概念,是掌握数学基础知识的前提.学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题.因此,抓好数学概念的教学,是提高数学教学质量的关键,学生在数学学习中有一个现象:当解决数学某一问题遇到困难时,如果追根求源,就会发现,往往是由于他们在某一个或某一些概念处产生问题,而导致思维受阻。许多事实例证了正确地理解 数学概念是牢固掌握数学知识,灵活运用数学知识解决问题的金钥匙。基于此,我们就要对数学概念的本质进行分析,并且希望找到合理的概念教学的模式,以使教师的教课与学生的数学学习轻松而有成效。

关键词: 初中数学

数学概念 教学

通过参与这学期的国培培训计划,对初中数学概念课堂教学有更深层次的认识,数学概念是对客观事物的数量关系、空间形式或结构关系的特征概括,是对一类数学对象的本质属性的反映。初中数学中有大量的概念,它们是数学基础知识的重要组成部分,也是导出数学定理和数学法则的逻辑基础。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的.况且有的教师在教学过程中,不注意结合学生心理发展特点去分析事物的本质特征,只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确地理解、记忆和应用.下面就如何做好数学概念的教学谈几点体会.

一、概念的引入

探究数学概念产生的实际背景(其实质就是概念的引入),是进行数学概念教学的第一步,这一步走的如何,对学生学好数学概念有重要的作用。概念的引入是概念课教学的起始步骤,是形成概念的基础。传统教学中在教学方式上是以教师传授为主,学生被动接受学习,这显然不利于新课程背景下创造型人才的培养。课程标准中提出“ 抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式”。通过概念引入过程的教学,应该使学生明确:“概念在生活中的实际背景是什么?”“为什么引入这一概念”以及“将如何建立这一概念”,从而使学生明确活动目的,激发学习兴趣,提取有关知识,为建立概念的复杂智力活动做好心理准备。在引入过程中教师要积极地为学生创设有利于他们理解数学概念的各种情境,给学生提供广阔的思维空间,让他们逐渐养成主动探究的习惯,从而实现新课程标准中提出的通过主动探究来获取知识,使学生的学习活动不再单纯地依赖于教师的讲授,教师努力成为学习的参与者、协作者、促进者和组织者。 1. 运用具体实物或模型,形象地讲述新概念

概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识.教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径.所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征.例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识.这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻.联系概念的现实原理引入新概念。在教学中引导学生观察有关实物、模型、图示等,让学生在感性认识的基础上,建立概念,理解概念的实际内容,搞清楚这些概念是从什么问题上提出来的。例如:在平面几何平行线的教学中,可以让学生观察单线练习本中的一组平行线,分析这组线的位置特点,再利用相交线作对比,然后概括出平行线的定义;在圆的概念的教学时,让学生动手做实验,取一条定长的细绳,把它的一端固定,另一端栓一支铅笔,拉紧绳子,移动笔尖,画出的图形是什么?学生通过动手实践,观察所画出来的图形,归纳总结出圆的定义。

2. 从具体到抽象引入新概念。数学概念有具体性和抽象性双重特性。在教学中就可以从它具体性的一面入手,使学生形成抽象的数学概念。例如:在讲线线垂直的概念时,先让学生观察教室或生活中的各种实例,再模拟出线线垂直的模型,抽象出其本质特征,概括出线线垂直的定义,并画出直观图,即沿着实例、模型、图形直至想像的顺序抽象成正确的概念,再比如对于一元一次方程的概念,可以借助一些简单的实例,让学生列方程,然后观察这些具体方程的共同点,从具体到抽象归纳概括出一元一次方程的定义。

3.用类比的方法引入概念。类比不仅是一种重要形式,而且是引入新概念的重要方法。例如:可以通过同类项的定义类比地归纳出同类二次根式的定义,通过类比分数得到分式的概念,类比一元一次方程得到一元一次不等式、二元一次方程、一元二次方程、一次函数等概念。作这样的类比更有利于学生理解和区别概念,在对比之下,既掌握了概念,又可以减少概念的混淆。

事先让每位学生准备一张三角形纸片和剪刀,课上让学生思考,只剪一刀,将剪成的两张纸片拼成一个平行四边形。学生很乐于参与这种动手操作的活动,根据生活经验也不难完成活动(如图),

但当教师提出“说说你的裁剪方法”时, 学生只能用生活语言,如“沿三角形的中间剪的”,说不出准确的数学语言。此时教师引导学生观察裁剪线的端点具有什么样的特征?有实物模型加上学生动手剪拼,可以得到 D 、 E 均为各边的中点。那么,它能叫中线吗?如果不能,我们可以给它起个什么名字?让学生尝试命名,根据它位置的特殊性,学生在教师的启发下,可以得到中位线的概念。这样的设计激发了学生的探究欲望,而且为后续探究中位线的性质埋下了伏笔,可谓一举多得。 由上面的分析可以看出,概念的引入方式没有统一的模式,总的原则是通过教师创设典型、丰富的具体实例(可以让学生自己举例),引导学生展开分析、比较、综合等活动,在此基础上,概括出共同本质特征,得到概念的本质属性。为了激发学生的学习兴趣,促进学生的思考,引入的形式应该多种多样,可以是问题导入、游戏导入、史话导入等等。

概念的引入方法很多,设计时不仅要考虑概念自身的特点,还要结合学生的认识水平及生活经验,本着有利于突显概念本质的原则。

二、理解新概念 1.对概念的剖析及辨析

刚刚对新概念的学习之后,要想理解概念,首先应该是对概念的剖析及辨析,概念生成之后,应用概念解决问题之前,往往要进行概念剖析,即用实例(包括正例与反例)引导学生分析关键词的含义,包括对概念特性的考察,可以达到明确概念、再次认识概念本质的目的,在剖析概念时通常要对概念的多种表示语言进行转化,数学语言主要是文字叙述、符号表示、图形表示,要会三者的翻译,同时更重要的是强调符号感。还可以从中体会概念中所呈现的转化问题的方法,这是最基本、最重要的方法。 2.利用概念中的关键字、词,帮助学生理解概念

数学概念中的某些字、词的含义,为我们提供了记忆概念本质属性的直观材料,强调概念中具有这种特征的字和词,能有效地理解和记忆概念的本质特征.例如,“一元二次方程”这个概念本身具有“一元”、“二次”、“方程”3个关键词,抓住这3个特征,学生自然也就掌握了这个概念.又如三角形的内切圆、外接圆中的“内”、“外”分别指出了圆在三角形内部、外部;“切”、“接”分别指出了圆与三角形的3条边相切,圆与三角形的3个顶点相接.教学中着重强调这些字词,使学生一看到这一概念,就会联想到这一概念是如何定义的

3.通过比较,使学生正确地理解概念

如果说变式是从材料方面促进学生的理解,比较则是从方法方面促进学生的理解.对于一些容易混淆的概念,通过比较可以了解它们之间的区别与联系,使其本质特征更清晰.例如,在讲解梯形的概念时,可要求学生比较梯形与平行四边形两种图形的相同点和不同点.学生通过比较和总结不难得出,两种图形的相同点是:它们都是四边形,都至少有一组对边平行;不同点是:平行四边形的两组对边分别都平行,而梯形只有一组对边平行,另一组对边不平行.通过比较这两个概念的异同点,学生很容易抓住它们的本质属性,促进对概念的理解和记忆.教师首先要认识到,它是一个组合图形,是由特殊的平行四边形和三角形组合而成的,所以它基本上没什么性质,而是通过图形分解,转化为平行四边形和三角形来解决问题的。其次教师要将这一点传递给学生,学生如果明确了,那么也就能自觉地添加辅助线解决问题了。如果进一步能够弄清四边形与三角形如何拼成梯形,那么,对于如何添加辅助线将梯形转化为特殊的平行四边形以及三角形就不是特别困难了。

4.在应用中加深对概念的理解,

培养学生的数学能力对数学概念的深刻理解,是提高学生的解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻.

三、初中数学概念的教学的几点注意事项:

1.概念(特别是核心概念)教学中,要把“认识数学对象的基本套路”作为核心目标之一;

2.数学概念的高度抽象性,决定了其认识过程的曲折性,不可能一步到位,需要一个螺旋上升,在已有认知基础上再概括的过程;

3.人类认识数学概念具有渐进性,因此学习像函数这样的核心概念时,需要区分不同年龄阶段的 概括层次(如变量说、关系说、对应说等),这也是“教学要与学生认知水平相适应” 的原因所在;

4.为了更利于学生开展概括活动,教师要重视让学生能够自己举例,“一个好例子胜过一千条说教”; 5.“细节决定成败”,必须安排概念的辨析、概念间联系的分析等过程,即要对概念的内涵进行“深加工”,对概念要素作具体界定,让学生通过对概念的正例、反例作判断,更准确的把握概念的细节; 6.在概念的系统中学习概念,即要通过概念的应用,形成用概念做判断的“操作步骤”,同时建立相关概念的联系,这是一次新的概括过程。

总之,对于初中数学概念的教学,没有固定的模式,正所谓教无定法,好的概念教学课没有统一的标准,可谓百花齐放,但不好的概念教学课却有统一的特征:学生只是知道某某概念,但对于其怎么来的以及如何使用并没有明确的认识。希望我们大家一起努力,使小小的概念教学中,能折射出我们教师大大的智慧。最后把 前苏联数学家辛钦的一句话送给大家:我想尽力做到在引进新概念、新理论时,能尽可能的看到新概念、新理论的引入是自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化的理解并掌握所学到的东西。

初中数学课堂教学设计(全文) 论文资料 第1张
初中数学课堂教学设计(全文).docx
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 初中数学课堂教学设计(全文) 论文资料 第2张 初中数学课堂教学设计(全文) 论文资料 第2张 初中数学课堂教学设计(全文) 论文资料 第2张 初中数学课堂教学设计(全文) 论文资料 第2张 初中数学课堂教学设计(全文) 论文资料 第2张
初中数学课堂教学设计(全文) 论文资料 第7张 点击下载文档文档为doc格式
上一篇
下一篇
返回顶部