范文网 论文资料 风力发电仿真课程设计(集锦)

风力发电仿真课程设计(集锦)

风力发电仿真课程设计第一篇:风力发电仿真课程设计风力发电课程设计1.风力发电发展的现状1.1世界风力发电的现状近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增。

风力发电仿真课程设计

第一篇:风力发电仿真课程设计

风力发电课程设计

1.风力发电发展的现状

1.1世界风力发电的现状

近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。

到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。

欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。

有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。

1.2我过风力发电的发展现状

我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。

自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。

我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。

2 风力发电机

2.1恒速恒频的笼式感应发电机

恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。

恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。

2.2变速恒频的双馈感应式发电机

变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。

双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。

双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

2.3变速变频的直驱式永磁同步发电机

变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力 需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。

直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。

如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特征,那么直驱式永磁同步发电机组也属于变速恒频的风力发电系统。

3介绍相关风力发电控制技术

3.1风力发电控制系统的目的

由于风力发电机组是复杂多变量非线性系统,具有不确定性和多干扰等特点。风力发电控制系统的基本目标分为4个层次:保证可靠运行,获取最大能量,提供良好电力质量,延长机组寿命。控制系统实现以下具体功能:

(1) 运行风俗范围内,确保系统稳定运行。

(2) 低风速时,跟踪最优叶尖速比,实现最大风能捕获。

(3) 高风速时,限制风能捕获,保持风力发电机组的额定输出功率。

(4) 减少阵风引起的转矩峰值变化,减少风轮机械应力和输出功率波动。

(5) 控制代价小。不同输入信号的幅值应有限制,比如桨距角的调节范围和变桨距速率有一

定限制。

(6) 抑制可能引起机械共振的频率。

(7) 调节机组功率,控制电网电压、频率稳定。

3.2风力发电控制系统

除了风轮和发电机这两个核心部分,风力发电机组换包括一些辅助部件,用来安全、高效的利用风能,输出高质量的电能。

(1)传动机构

虽说用于风力发电的现代水平轴风力机大多采用高速风轮,但相对于发电的要求而言,风轮的转速其实并没有那么高。考虑到叶片材料的强度和最佳叶尖速必的要求,风轮转速大约是18~33r/min。而常规发电机的转速多为800r/min或1500r/min。

对于容量较大的风电机组,由于风轮的转速很低,远达不到发电机发电的要求,因而可以通过齿轮箱的增速作用来实现。风力发电机组中的齿轮箱也称增速箱。在双馈式风力发电机组中,齿轮箱就是一个不可缺少的重要部件。大型风力发电机的传动装置,增速比一般为40~50。这样,可以减轻发电机质量,从而节省成本。

也有一些采用永磁同步发电机的风力发电系统,在设计时由风轮直接驱动发电机的转子,而省去齿轮箱,以减轻质量和噪声。

对于小型的风电机组,由于风轮的转速和发电机的额定转速比较接近,通常可以将发电机的轴直接连到风轮的轮毂。

(2)对风系统(偏航系统)

自然界的风方向多变。只有让风垂直地吹向风轮转动面,风力机才能最大限度地获得风能。为此,常见的水平轴的风力机需要配备调向系统,使风轮的旋转面经常对准风向。

对于小容量风力发电机组,往往在风轮后面装一个类似风向标的尾舵,来实现对风功能。 对于容量较大的风力发电机组,通常配有专门的对风装置——偏航系统,一般由风向传感器

和伺服电动机组合而成。大型机组都采用主动偏航系统,即采用电力或液压拖动来完成对风动作,偏航方式通常采用齿轮驱动。

一般大型风力机在机舱后面的顶部有两个互相独立的传感器。当风向发生改变时,风向标登记这个方位,并传递信号到控制器,然后控制器控制偏航系统转动机舱。

(3)限速装置

风轮转速和功率随着风速的提高而增加,风速过高会导致风轮转速过高和发电机超负荷,危及风力发电机组的运行安全。限速安全机构的作用是使风轮单位转速在一定的风速范围内基本保持不变。

(4)液压制动装置

机组的液压系统用于偏航系统刹车、机械刹车盘驱动,当风速过高时使风轮停转,保证强风下风电机组安全。

机组正常时,需维持额定压力区间运行。 液压泵控制液压系统压力,当压力下降至设定值后,启动油泵运行,当压力升高至某设定值后,停泵。

4风力发电技术发展趋势的展望

4.1风力发电的发展方向

风力发电技术是目前可再生能源利用中技术最成熟的、最具商业化发展前景的利用方式,也是本世纪最具规模开发前景的新能源之一合理利用风能,既可减少环境污染,有可减轻目前越来越大的能源短缺给人类带来的压力。

未来风力发电技术将向着以下几个方向发展。

(1)单机容量大。主流的新增风力机的单机容量将从750KW~1.5MW向2MW甚至更大的容量发展。目前世界上单机容量最大的风机,为5MW风力发电机,海上风力发电的6MW风电机组也已研制成功。

(2)风电场规模增大。将从10MW级向100MW、1000MW级发展。

(3)从陆地向海上发展。

(4)生产成本进一步降低。

4.2未来风力发电的展望

据专家们测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。“风力12”、欧洲风能联合会、能源和发展论坛以绿色和平组织于2002年联合发表了一篇报告,以上述估计值作为基础,制定了风能的目标:到2020年,风力发电将占到全球发电总量的12%。为了达到这个目标,需要建立总容量大约为1260GW的风能装置,每年可发电3000TW·h左右。这相当于现在欧盟的用电量。世界风能协会预计,从世界范围来看,预计2020年,风电装机容量会达到1231GW。年发电量相当于届时世界电力需求的12%,与上述报告的结论一致。风电会向满足世界20%电力需求的方向发展,相当于今天的水电,有研究显示到2040年大致可以实现这一目标。届时将创造179万个就业机会,风电成本下降40%,减少排放100多亿吨二氧化碳。因此,在建设资源节约型社会的国度里,风力发电已不再是无足轻重的补充能源,而是最具有商业化发展前景的新兴能源产业。

第二篇:风力发电机组塔架的设计原则和设计方法

塔架的设计原则和设计方法

塔架作为支撑结构,应在规定的外部条件、设计工况和载荷情况下稳定的支撑风轮和机舱(包括发电机和传动系统),以保证风力发电机组安全正常运行。因此在设计和生产中应坚守以下原则:

1)塔架应具有足够的强度、承受作用在风轮和塔架上的静载和动载荷。

2)应通过计算分析和/或试验确定塔架的固有特性和阻尼特性,并对塔架进行风轮旋转引起的振动、风引起的顺风向振动和横风向振动进行计算分析,使其在规定的设计工况下满足稳定性和变形限制的要求。

3)应根据安全等级确定载荷局部安全系数和材料局部安全系数。

4)塔架分段应考虑以下因素:运输能力;生产条件和批量;考虑上法兰与短节塔筒焊后进行二次机加工后与塔筒组焊,使法兰平面度提高。

5)通过塔架设计、材料选择和防护措施减少其外部条件对塔架安全性和完整性的影响。 在设计中,需要对塔架的承载能力极限状态和正常使用极限状态进行分析:包括:

1)极限强度;塔架的强度分析可采用应力法。应力计算一般采用传统的方法,如不能正确确定应力时,可采用有限元等数值计算方法计算。

2)疲劳;塔架疲劳分析可采用简化疲劳验证法和循环载荷谱的损伤累计法。

3)稳定性;塔架的稳定性分析和力学分析可采用相关标准规定的方法进行。

4)变形限制。塔架变形限制分析一般采用传统的方法,如不能正确确定变形时,可采用有限元等数值计算方法。

第三篇:风力发电机控制系统研究本科生毕业设计

本科生毕业设计(论文)开题报告

题目:风力发电机控制系统研究

学院:信息工程系电气工程及自动化

专业:电机电器

班级:电气051班

学号:7022805017

姓名:熊寅

指导教师:江智军

填表日期:2008年4月4日

一、选题的依据及意义

1.1 选题依据:

传统风力发电机组大都采用三桨叶与轮毅刚性连接的结构,即定桨距风轮。桨叶端部

1.5—2.5m的部分设计一般设计成可控制的叶尖扰流器,当风力发电机组需要停机时,扰流器可旋转90度形成阻尼板,使风轮转动速度迅速下降,这一机构称为气动刹车。

随着风力发电机组设计制造水平的不断提高,在大型的风力发电机组中已经普遍开始采用变桨距风轮。变桨距风轮的桨叶和轮毅不再是刚性连接,而是通过可以转动的推力轴承或者专为变桨结构设计的联轴器来联接。这种风轮的优点在于可以根据风速来调节气流对叶片的攻角,当风速超过额定风速时,通过调节风轮的受力可以使风机保持在稳定的输出功率上。而且,在大风的情况下可以调节风机处于顺桨状态从而改善整个风机的受力状况。

与火电煤电等常规发电方式不同,风力发电机组需要频繁地起停,并且转动惯量很大,转速大都设计在每分钟十几到三十几转之间,机组容量越大,风机的转速越低。所以,传统的风力发电机组的风机与发电机之间通常需要增设增速齿轮箱。而风力发电厂的安装和运行经验都表明,齿轮箱往往是维护工作量最大的一个部件,也是成本最高、寿命最短的部件之一,故此,如何提高齿轮箱的可靠性或者是否可以取消齿轮箱就成为广大风力发电研究者的研究课题之一。

变速恒频直驱型风力发电机组在运行时,风机不接增速齿轮箱,直接和发电机祸合;发电机的定子为三相绕组或多相绕组,转子为永磁或电励磁结构;定子发出非工频的电能,电压也随转速变化;系统中有整流逆变装置,发电机发出的电压和频率都在变化的交流电经整流逆变后变成恒压恒频的电能输入电网;通过调节逆变装置的控制信号可以改变系统输出的有功功率和无功功率,实时满足电网的功率需要。在变速恒频直驱风力发电机组中,整流逆变装置的容量需要与发电机容量相等。

1.2选题意义:

变速恒频发电是一种新型的发电技术,非常适用于风力、水力等绿色能源开发领域,尤其是

在风力发电方面,变速恒频体现出了显著的优越性和广阔的应用前景1)传统的恒速恒频发电方式由于只能固定运行在同步转速上,当风速改变时风力机就会偏离最佳运行转速,导致运行效率下降。采用变速恒频发电方式,就可按照捕获最大风能的要求,要风速变化的情况下实时调节风力机转速,使之始终运行在最佳转速上。(2)变速恒频发电可以在异步发电机的转子侧施加三相低频电流实现交流励磁,控制励磁电流的幅值、频率、相位实现输出电能的恒频恒压。(3)采用变速恒频发电技术,可使发电机组与电网系统之间实现良好的柔性连接,比传统的恒频发电系统更易实现并网操作及运行。

风能作为一种清洁的可再生能源,越来越受到各国的重视。首先,它来自于自然,取之不尽用之不竭;其次,风力发电只降低了风的速度,并不产生任何有害的物质,对大自然没有污

染。这些优势使得人们对它青睐有加。

随着风力发电应用得越来越广,在整个能源结构中所占比例越来越大,风力发电技术要朝着大功率、高效率、直驱式、变转速、变桨距和最优控制等方向发展,达到提高机组运行性能、提高风能利用率、简化结构提高可靠性、减少材料消耗、降低机组重量、降低造价的目的。对我们能源节约的问题上有着重要的意义。

二、国内外研究现状及发展趋势(含文献综述)

2.1 国内研究现状及发展趋势:

我国虽然是在20世纪70年代就开始研制大型并网型风力发电机组,但直到在90年代国家“乘风计划“的支持下,风力发电才真正从科研走向市场。在国家有关部委的支持下,额定功率为Zoowk、25OWk、300wk、600姗的风力发电机组已研制成功,ZOOWk~600wk的大型风力发电机组制造技术己基本掌握,并开始研制兆瓦级风力发电机组。我国自主开发的20OWk~300wk级风力发电机组的国产化率已超过9%0;6O0Wk风力发电机组样机的国产化率达到80%左右。此外还开发了一批风光、风柴联合发电系统。浙江省机电设计研究院研制的20Owk风力发电机组,于1997年4月通过了国家级技术成果鉴定,同年12月又完成了中试样机的研制。由上海蓝天公司主持研制的300wk风力发电机组,1998年初在南澳风电场投入并网运行,目前运行情况良好。在6O0wk风力机研制方面,由国家科委立项,新疆风能公司、浙江省机电设计研究院等单位主持的大型风力机国产化项目也迈出了坚实的步伐。到2003年,我国己在11个省区建立了27个风电场,总装机容量达46万wk。其中达坂城风电场累计安装风力发电机组172台,装机容量达到9.2万kw;南澳风电场安装风力发电机组近百台,装机容量达到4.8万kw;内蒙辉腾勒风电场装机容量也超过3万kw;福建的坪潭、大连横山、浙江舟山、上海崇明也都在规划建设500wk、6O0wk、800wk容量不等的风力发电场。其次,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心近,海上风电场必将成为今后我国新兴的能源基地。

虽然我国近几年风电发展很快,装机量以每年20%以上的速度递增,但风电仍仅占全国电力总装机的0.11%。相比国外,我国在风力发电技术的研究上比较落后,企业生产规模小,工艺技术落后,一些原材料和产品国产化程度低,重要原材料和零部件以及大容量的风力发电装置绝大多数依靠进口。国内自制的风力发电机多为异步发电机,不能做到变速恒频发电,不能有效地利用各种风况下的风能。总体上,我国的风力发电目前仍处于起步阶段。

为更好地实施国家可持续发展和西部大开发战略,国家计委、科技部、国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,其中包括国家的光明工程和863计划——后续能源技术主题等国家重大科技发展项目。我国风力发电指导思想是以市场为导向,选择成熟的、具有市场前景的技术、产品作为产业发展的重点,提出合理的发展目标,制定符合市场发展的产业政策。采取规范市场的措施,进一步推动新能源和可再生能源技术的开发和应用。我国风力发电划是重点开发6O0kW及以上风力发电机组,实现规模化生产;研究开发无齿轮箱、多级低速发电机、变速恒频等新型风力发电机组;提高10kw以下离网型风力发电机的生产技术水平,推广风/光互补、风/柴互补和风/光/柴联合供电系统。我国风力发电的主要目标是:2005年并网风力发电装机容量达到120万kw,形成15一20万kw的设备制造能力,以满足国内市场需求;到20巧年新能源和可再生能源年开发量达到4300、万吨标准煤,占我国当时能源消费总量的2%,该产业将成为国民经济的一个新兴行业,拉动机械、电子、化工、材料等相关行业的发展,对减轻大气污染、改善大气环境质量作用明显,将减少3000多万吨的温室气体及200多万吨二氧化硫等污染物的排放,提供近50万个就业岗位。可见,有了国家的重视和政策的支持,风力发电必将有广阔的发展前景。

2.2 国外研究现状与发展趋势:

首先从装机容量上来看近几年世界风力发电的发展。到2001年,全球总装机容量为25273MW,其中德国装机容量为8OOOWM,名列首位,占世界风电装机容量的30%。美国装机容量达4000WM,名列第二。西班牙为3300WM,名列第三。丹麦装机容量265OWM,英国为65OWM,中国为400WM,排列第八位。到2002年底,世界总装机容量为32037WM,而欧洲占全世界的74.4%,为23832MW。据预测,在2001一2005年的5年间,全世界新增风力发电设备的发电能力约为3900WM,到2010年全世界总装机容量会超过140000WM,预计2020年的世界风力发电量将占全世界总发电量的10%。

其次,从政策上来了解各国对发展风力发电的态度。为促进风力发电的发展,世界各国政府特别是欧美国家出台了许多优惠政策,主要包括有:投资补贴、低利率贷款、规定新能源必须在电源中占有一定比例、从电费中征收附加基金用于发展风电、减排C02奖励等。欧洲的德国、丹麦、荷兰等采用政府财政扶持、直接补贴的措施发展本国的风力发电事业;美国通过金融支持,由联邦和州政府提供信贷资助来扶持风力发电事业;印度通过鼓励外来投资和加强对外合作交流发展风力发电;日本采取的措施则是优先采购风电。多种多样的优惠政策促进了各国风力发电的快速发展。

三、本课题研究内容

本文以变速恒频直驱风力发电机为控制对象,对由其构成的风力发电系统及其相关的控制技术进行研究,研究内容主要包括以下几个方面:

1.深入研究变速恒频风力发电技术;

2.针对变速恒频风力发电技术,相应提出同步风力发电机的控制策略;

3.设计搭建实验平台,用于测试控制策略的可行性;

4.完成主要控制部分的软件设计;

5.结合平台完成实验并分析实验结果。

四、本课题研究方案

本文首先从传统的风力发电机组开始分析,研究变速恒频直驱风力发电技术与其具有哪些不同以及具有的的优势,然后谈及同步风力发电机组的控制略、运行原理和发电系统的组成。研究方案中还包括控制系统中硬件部分的组成和软件部分的组成,如何通过仿真模型实验来验证这种控制方案的实施。

五、研究目标、主要特色及工作进度

5.1研究目标。

5.2 主要特色

伴随着风力发电产业的发展和对风能利用水平要求的不断提高,风力发电的控制系统一直处在人们关注的焦点之下,是人们不断研究和改进的对象。同步风力发电机系统以其无齿轮箱、输出有功和无功功率可调节等优势曾经博得过人们的青睐,但因其难以满足恒速恒频的控制要求一度退出风电舞台。现在,电力电子技术的发展使得同步风力发电机的控制变得更加简单,变速恒频技术的进步给同步风力发电机的应用提供了更广阔的空间。

变速恒频直驱风力发电技术的优点有:可以实现最大风能获取,对永磁机组而言有较高的效率;有较宽的转速运行范围,可在-30%~+15%的转速范围内运行;没有齿轮箱,可靠性好;控制简单,可灵活地调节有功和无功功率。

六、参考文献

[29]Chung D W, Unified Voltage Modulation Technique for Real Time Three-Phase Power Conversion [J]. IEEE Trans. On Industry Application, 1998

[30]C. S. Berendsen, G. Champenois, J. Pavoine.Commutations Strategies for Brushless D. C.

Motor Influence on the Instant Torquc. IEEE, 1990

[31]Nicola Bianchi, Silverio Bolognani and Brian J. Chalmers. Salient-Rotor PM Synchronous Motors for an Extended Flux-Weakening Operation Range. IEEE Trans. On Industry Application, 2000

[32]BrianJ.Chalmers,andLawrenceMusaba.DesignandField-Weakening Performance of a Synchronous Reluctance Motor with Axially-Laminated Rotor. IEEE Industry Society Annual Meeting, New Orleans, Louisiana, 1997

[33]M Marinescu, N Marinescu. Numerical computation of torque in permanent magnet motors by Maxwell stresses and energy method [J].IEEE Trans. On Magnetic s, 1988

[34] TMS320LF/LC240xA DSP Controllers System and Peripherals Reference Guide, Texas Instruments, 2002

第四篇:世界风力发电发展态势及我国风力发电所需的关键原料

据专家估算:全球风能1700太瓦,大洋、高山和保护区域的风力是采集不到的,除去这些以及一些风力达不到开发要求的地区,依然有40~85太瓦的风能,目前世界只利用了0.02太瓦的风能。风力发电是风能利用的主要形式,风力发电成本低于其他新能源,并有进一步降低成本的可能;风力发电是最清洁最安全的,目前世界风力发电发展速度超过其他新能源发展,未来风力发电很可能成为全球电力的主要来源之一。据我国专家估算,我国可开发利用风能至少十几亿千瓦,快速推进风力发电是我国实现减排目标的必要途径之一。

根据美国发布的可再生能源标准(RES),到2012年美国可再生能源占10%,2025年占25%。2004~2008年美国新安装风力发电机新增风电年均增长率为29%。2008年新增风电占新增可再生能源的42%。美国政府承诺长期支持风力发电,投资数十亿美元制造风电涡轮机和建设智能电网, 2009~2029年安装风力发电机将每年新增风力发电能力4亿瓦~16亿瓦,到2030年风力发电总容量累计增加到305亿瓦,届时风力发电满足电力需求的20%。欧盟风力发电装机总容量56535兆瓦。丹麦风力发电占本国电力的20%,西班牙占13%,葡萄牙占12%,爱尔兰9%,德国8%。德国规划到2020年可再生能源发电占25~30%,德国于1991年制定法律鼓励发展可再生能源,主要是风力发电,德国风力发电涡轮机生产能力占世界22%,未来几年内将在海岸建大型风力发电场。

2006年我国风电装机总容量仅2588兆瓦,2008年增加到12121兆瓦,年均增长率为116%。据中国风能协会预测, 2010年我国风电总装机容量达20亿瓦,2020年达到80亿瓦,2030年达到180亿瓦,2050年达到500亿瓦。我国政府将强力支持建设智能电网,解决风电输送问题,未来风电将成为我国电力的主要来源之一。

一台大型风力发电涡轮机需要稀土2吨,铜5吨,铝3吨,钢300吨; 3兆瓦大型风机转子叶片长约54米,玻璃纤维/碳纤维混合增强复合材料叶片最轻的达13.4吨,单只叶片需要玻璃纤维和碳纤维约6吨。2009年我国风电装机总容量已经达到22亿瓦,根据我国风电发展规划,到2020年风电装机总容量达到80亿瓦,需新增风电装机容量58亿瓦,若以3兆瓦风力发电涡轮机计算, 2010~2020年期间我国需要新安装大型风力发电涡轮机19333台,累计需要稀土金属4万吨,铜10万吨,铝6万吨,钢600万吨,玻璃纤维和碳纤维约36万吨。到2030年风电装机总容量达到180亿瓦,需新增风电装机容量122亿瓦,已3兆瓦风力发电涡轮机计算,2020~2030年我国需要新安装大型风力发电涡轮机40666台,累计需要稀土金属约8.2万吨,铜20.33万吨,铝12.19万吨,钢1219.98万吨,玻璃纤维和碳纤维约73.2万吨,所需稀土主要是钕,用于生产稀土永磁材料。2009年我国风电装机总容量已经超过2010年的规划目标,估计我国风力发电规模会远远超过规划目标,2010~2020年期间我国风力发电行业对稀土金属实际需求量很可能是按规划估算需求量的2倍以上,对玻璃纤维和碳纤维实际需求量是估算的2倍多。为此建议国土资源部相关部门应充分调查我国风力发电行业现状和发展计划,准确的估算我国风力发电行业对稀土金属等产品的需求量,以保证正确控制稀土金属及其氧化物生产总量,为风电行业发展提供足够的高质量的矿物原料。

第五篇:风力发电

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。风是一种潜力很大的新能源,十八世纪初风力发电图

,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下

风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。。

优点

1、清洁,环境效益好;

2、可再生,永不枯竭;

3、基建周期短;

4、装机规模灵活。

缺点

1、噪声,视觉污染;

2、占用大片土地;

3、不稳定,不可控;

4、目前成本仍然很高。

5、影响鸟类。

上一篇
下一篇
返回顶部