范文网 论文资料 二氧化碳制备教案(精选)

二氧化碳制备教案(精选)

二氧化碳制备教案教案是教育者的教学准备和教学设计,教师在教学准备中要把教材中严肃的政治话语书写为学生喜闻乐见的大众话语,把教材用语转化为教学用语,通过简单的修辞、轻松的语境唤起教育对象对教学内容的内心认同。下面是小编为大家整理的《二氧化碳制。

二氧化碳制备教案

教案是教育者的教学准备和教学设计,教师在教学准备中要把教材中严肃的政治话语书写为学生喜闻乐见的大众话语,把教材用语转化为教学用语,通过简单的修辞、轻松的语境唤起教育对象对教学内容的内心认同。下面是小编为大家整理的《二氧化碳制备教案》,供大家参考,更多范文可通过本站顶部搜索您需要的内容。

第一篇:二氧化碳制备教案

二氧化硫和二氧化氮的制备和性质研究教案

二氧化硫制备和性质研究教案

三维目标

知识与技能

1、了解二氧化硫的实验室制法

2、探究二氧化硫还原性、氧化性、酸性、漂白性的性质 过程与方法

1、通过探究二氧化硫的性质实验,使学生掌握科学的实验方法,培养学生的逻辑思维能力和动手能力。

2、学会鉴别、处理二氧化硫残留量过多的食品方法。 情感态度价值观

1、通过对二氧化硫性质的推理过程,使学生从中体会到严谨求实的科学探究态度。

2、珍惜有限资源和环境保护意识,具有强烈的社会责任感。

3、培养学生与他人合作的协作精神。

4、让学生具有一些简单的自我保护意识。

要点提示

教学重点

1、对二氧化硫的性质探究

2、培养学生求实协作精神 教学难点

1、利用探究试验推测二氧化硫的化学性质

2、激发学生观察思辨的能力 教学用品

教学有关资料(新观察) 98 %浓硫酸、 无水亚硫酸钠、 品红溶液、 KMnO4 溶液、 Na2S溶液、 5 % NaOH溶液、 蓝色石蕊试纸、 蒸馏水、 乳胶、针筒、 具支试管、小试管、小烧杯等。

教学过程

【提出问题】SO2是一种大气污染物,它是形成硫酸型酸雨的“罪魁祸首”,那么现在就让我们一起来探究SO2的实验室制备方法和其化学性质。 【板书】二氧化硫的制备与性质研究 【演示实验】在一支具支试管中加入少量无水亚硫酸钠固定在铁架台上,分别在 a、 b、 c、上滴 1 滴蒸馏水、KMnO4 溶液和 Na2 S溶液;用针筒吸入2—3mL 98 %浓硫酸,将针筒中的浓硫酸注入具支试管中,加热,让学生观察玻璃棒上试纸条、 滤纸条,品红溶液的颜色变化,将产生多余的气体通入装有5 % NaOH溶液的小试管中再加热已褪色的品红溶液,观察实验现象。 【实验现象板书】

(1) 蓝色石蕊试纸 a 变红

(2)滴有 KMnO4 溶液的滤纸 b 褪色 (3)滴有 Na2S 溶液的滤纸 c变为黄色

(4)品红溶液褪色,加热已褪色的品红溶液后溶液变红 【整理联系】

(1) 蓝色石蕊试纸 a 变红,说明 SO2 的水溶液呈酸性; (2)滴有 KMnO4 溶液的滤纸 b 褪色 ,说明 SO2具有还原性 ,易被 KMnO4 所氧化;

(3)滴有 Na2S 溶液的滤纸 c变为黄色 ,说明SO2 具有氧化性 ,易将 - 2价硫氧化为0价。

(4)品红溶液褪色,说明 SO2 具有漂白性;加热已褪色的品红溶液后溶液变红,说明SO2 的漂白性不稳定。 【结论板书】

二氧化硫的实验室制法:H2SO4(浓)+Na2SO3=Na2SO4+SO2↑+H2O SO2具有还原性、氧化性、酸性、漂白性,且漂白性不稳定。

二氧化氮的装备及其性质教案

1.1教学目标

(1)了解二氧化氮的物理性质 (2)掌握二氧化氮化学性质

(3)通过观察思考等过程训练科学的学习方法 1.2教学重点

实验原理和二氧化氮的化学性质 1.3课前准备

所用实验用品:注射器,小烧杯三个(分别盛水,氢氧化钠溶液,一个空的),大烧杯一个,大橡胶塞一个,表面皿一个,蓝色石蕊试纸

所用药品:铜片,浓硝酸,氢氧化钠溶液,水 1.4实验演示过程

[提出问题]我们已经学过二氧化氮的物理性质和一些化学性质和它的制备原理,那在实验中我们如何来检验它的一些化学性质呢,由于二氧化氮是有毒气体,在实验中希望制备尽量少的气体,又能完成性质的检验,那我们用什么样的实验来实现我们的目的呢,就让我们来看有关二氧化氮的制备和性质检验的微型实验。

[介绍媒体]我们这个实验用的仪器很简单,和一氧化氮的制备与性质检验相似,用注射器做为反应装置,另外用到橡胶塞作为密封装置。 [实验探究] 实验原理: Cu﹢4HNO3(浓)﹦ Cu(NO3)2﹢2NO2↑+ H2O 相应装置(或实验装置)

仪器药品

注射器 ,小烧杯三个(分别盛水,氢氧化钠溶液,一个空的),大烧杯一个,大橡胶塞一个,表面皿一个,蓝色石蕊试纸

铜片,浓硝酸,氢氧化钠溶液,水

实验步骤

(1)在注射器中放入两片铜片(约0.5克),将注射器推到底部 (2)将输液管插入浓硝酸中,吸入1ml后,将注射器插到橡胶塞上

(3)待反应停止后,看见红棕色气体,压注射器活塞,引导学生观察气体颜色变淡还是变浓还是不变,取一张蓝色石蕊试纸湿润放在干净的表面皿上,拔出注射器,让蓝色溶液流到大烧杯中,将试纸靠近针头,试纸变红色

(4)吸入3ml水在注射器中,看见红棕色气体变无色,让水流出,吸入空气,引导学生观察那一瞬间出现红棕色,(因为注射器中有水,二氧化氮溶于水所以红棕色很快消失)实验结束,将气体推到氢氧化钠溶液中。 1.5板书设计

二氧化氮的制备及其性质检验 实验原理:Cu﹢4HNO3(浓)﹦ Cu(NO3)2﹢2NO2↑+ H2O 化学性质

现象:压活塞,气体颜色不变 性质:2NO2﹦N2O4 蓝色石蕊试纸变红 NO2为酸性气体

吸入水后红棕色气体变成无色溶液和无色气体 氧化性,3 NO2﹢H2O﹦ NO ﹢2HNO3

第二篇: 二氧化钛纳米材料的制备

陈维庆

(贵州大学矿物加工工程082班

学号:080801110323)

要:二氧化钛俗称钛白,是钛系列重要产品之一,也是一种重要的化工和环境材料。目前制备纳米二氧化钛的方法很多,本文综述了纳米二氧化钛的多种制备方法和生产原理,在总结归纳基础上对各种制备方法进行比较,概述相关的研究进展。

关键词:二氧化钛

纳米粒子

生产原理

Titanium dioxide nanomaterials preparation

Chenweiqing

(Guizhou University mineral processing project 082 classes) Abstract: Titanium dioxide, commonly known as titanium dioxide, titanium series is one of the major product, is also an important chemical and environmental materials. Preparation of nanometer titanium dioxide at present a number of ways, this overview of the variety of preparation methods of nano-titanium dioxide and production principle, on the basis of summarizing and to compare various methods of preparation, review of related research progress. Keyword: Titanium dioxide Nanometer granule Production principle 1 前

近20年来,纳米材料以其特殊的性能和广阔的发展前景引起各领域的广泛关注。是极具挑战性、富有活力的新科技,它对社会发展有着重要意义,对人类的进步有着深远影响。纳米材料可以理解为组成物质的颗粒达到纳米数量级也就纳米粒子。纳米粒子是处于微观粒子和宏观粒子之间(1~100 nm )的介观系统。目前,纳米科技产品的研发已经拓展到力学、化学、电子学、机械学、材料科学以及建筑、纺织、轻工等领域。

纳米材料及技术是科技领域最具活力、研究内涵十分丰富的科学分支。纳米材料包含纳米超微粒子(1~100 nm )以及由纳米超微粒子所制成的材料。纳米超微粒子以其显著的表明效应、量子尺寸效应、宏观量子隧道效应等一系列新颖的物理和化学特性,在众多领域特别是在光学材料、电磁材料、催化剂、传感器、医学及生物工程材料等众多领域具有极其重要的应用价值和广阔的发展前景。目前,为了提高涂料性能并赋予其特殊功能,将纳米材料用来改性涂料剂或作为助剂添加到涂料材料当中,是涂料产品研发领域的一个热点。改性涂料材料所使用的纳米材料一般为纳米半导体材料,如纳米SiO

2、TiO

2、ZnO、Fe2O

3、CaCO3等。

二氧化钛纳米材料(TiO2)是当前应用前景最为广阔的一种纳米材料,超微细二氧化钛具有屏蔽紫外线功能和产生颜色效应的一种透明物质。 2 液相法 2.1 溶胶-凝胶法

溶胶-凝胶法是一种较为重要的制备纳米材料的湿化学法,主要包括4个步骤:

第一步:溶胶。Ti(OR)4与水不互溶,但与醇、苯等有机溶剂无限混溶,所以先配制Ti(OR)4的醇溶液(多用无水乙醇)A,再配制水的乙醇溶液B,并向B中添加无机酸(HCl,HNO3等)或有机酸(HAc、H2C2O4或柠檬酸等)作水解抑制剂(负催化剂),也可加一定量NH3将A和B按一定方式混合、搅拌得透明溶液。

第二步:溶胶-凝胶转变制湿凝胶。

第三步:使湿凝胶转变为干凝胶。

工业出版社,2006,1:第四步:热处理。将干凝胶磨细,在氧化性气氛中在一定温度下热处理,便可得到<100 nm 的纳米TiO2

溶胶-凝胶法制备TiO2纳米材料可以很好地掺杂其它元素,粉末粒径小,分布均匀,是非常有价值的制备方法。但由于要以钛醇盐作为原料,又要加入大量的有机试剂,因此成本高,同时由于凝胶的生成,有机试剂不易逸出,干燥、烧结过程易产生碳污染,另外,对于困扰已久的团聚问题,局部表面化学反应、机械化学反应及用表面活性剂或聚合物包覆等都不能从根本上解决。 2.2 沉淀法

以廉价易得的TiCl4或Ti(SO4)2 等无机盐为原料,向反应体系加入沉淀剂后,形成不溶性的Ti(OH)4,然后将生成的沉淀过滤,洗去原溶液中的阴离子,高温煅烧即得到所要的纳米二氧化钛材料。 1 直接沉淀法

在含有一种或多种离子的可溶性盐溶液加入沉淀剂后于一定的条件下形成不溶性的氢氧化物;将沉淀洗涤、干燥,再经热分解得到氧化物粉体,其反应过程为(以TiOSO4为例):

TiOSO4 + 2NH3·H2O=TiO(OH)2 +(NH4)2SO4

TiO(OH)2 =TiO2(S) + H2O

该法操作简单,对设备、技术要求不太苛刻,产品成本较低,但沉淀洗涤困难。产品中易引入杂质。 2 均匀沉淀法

该法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。加入的沉淀剂不立刻与沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生成。以尿素做沉淀剂为例,其反应原理如下:

CO(NH2)2 +3H2O = CO2+2NH3·H2O

TiOSO4 + 2NH3·H2O=TiO(OH)2 +(NH4)2SO4

TiO(OH)2 =TiO2(S) + H2O

3 水热沉淀法

在内衬耐腐蚀材料(如聚四氟乙烯)的密闭高压釜中加入制备纳米二氧化钛的前驱物如TiCl

4、 Ti(SO4)2等,按一定的升温速率加热,升至一定温度后,恒温一段时间取出,冷

却后经过滤、洗涤、干燥,可得TiO2纳米材料粉体。水热法制备TiO2纳米材料粉体,第一步是制备钛的氢氧化物凝胶,反应体系有T、氨水或钛醇盐、水等;第二步是将凝胶转入高压釜内,升温(温度一般低于250℃)造成高温、高压的环境,使难溶或不溶得物质溶解并且重结晶,生成TiO2纳米材料粉体。此法能直接制得结晶良好且纯度高的粉体,不需要作高温灼烧处理,避免了粉体的硬团聚,而且通过改变工业条件,可实现对粉体粒径、晶型等特性的控制。然而水热法是高温、高压下反应,对设备要求高,操作复杂,能耗较大,因此成本也较高。 2.3 TiCl4直接水解法

将TiCl4直接注入水中,先稀释到一定浓度,在表面活性剂存在下,再通入NH3或NH3·H2O,则TiCl4发生水解沉淀析出TiO2·n H2O过滤、干燥、煅烧得TiO2亚微粉或超徽粉。反应式为: TiCl4 + 4 NH3 +(n+2)H2O = TiO2·n H2O+4NH4Cl 为了控制粒度和粒度分布及反团聚,也有的向TiCl4稀释液中加醋酸、柠檬酸、草酸或H2O2,使石TiO2+形成络合物,再加NH3中和水解,这样可控制水解速度。

该方法的优点是:工艺简单,反应条件温和且反应时间短,产品粒度均匀,分散性好,粒尺寸人为可控.可以制得锐敏型、金红石型及混合晶型,原料易得,生产成本较低,易于实现工业化。但是此方法需要经过反复洗涤来除去氯离子,所以存在工艺流程长、废液多、产物损失较大的缺点,而且完全洗净无机离子较困难。 2.4 钛醇盐水解法

在有分散剂存在并强烈搅拌下,对铁醇盐进行控制性水解,沉析出TiO2·n H2O沉淀,过滤、干燥、热处理,容易得到高纯、微细、单分散的类球形TiO2亚微粉或超微粉。该方法合成的纳米粉体颗粒均匀。纯度高,形状易控制,缺点是成本昂贵,作为原料的金属有机物制备困难,合成周期长。 2.5胶溶法

该法可制备各种组分的氧化物陶瓷粉体且制得的产品粒径小,粉体分散性好,粒度可控,但易发生粒子间团聚现象,成本也较高。这种工艺制备凝胶的方法与溶胶-凝胶法相似,但是利用胶溶原理,缩短了制备流程,省去耗能多的高温煅烧过程,从而避免了因烧结而引起的纳米粒子之间的硬团聚。 2.6 微乳液法

微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物,一般由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质溶液)组成。由于微乳液的结构从根本上限制了颗粒的成长,因此使得超细微粒的制备变得容易。通过超速离心,使纳米微粉与微乳液分离。再以有机溶剂除去附着在表面的油和表面活性剂,最后经干燥处理,即可得到纳米微粉的固体颗粒。该法所得产物粒径小且分布均匀。易于实现高纯化。该法有两个优点:(1)不需加热、设备简单、操作容易;(2)

可精确控制化学计量比,粒子可控。 3 气相法

3.1 低压气体蒸发法

此种制备方法是在低压的氢气、氮气等情性气体中加热普通的TiO2,然后骤冷生成纳米TiO2粉体。其加热源有电限加热法、等离子喷射法、高频感应法、电子束法和激光法,可制备100 nm以下的TiO2粒子。 3.2 活性氢-熔融金属反应法

含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电窝的N2 、Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器过滤式收集器使微粒与气体分离而获得TiO2纳米材料微粒。 3.3 流动页面上真空蒸发法

用电子束在真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2纳米材料超微粒子。 3.4钛醇盐气相水解法

该工艺反应式如下:

nTi(OR)4+2nH2O(g) = nTiO2(s)+4nROH 日本的曹达公司等利用氮气、氦气或空气做载气,把钛醇盐和水蒸汽分别导入反分器的反应区,进行瞬间和快速水解反应,通过改变反应区内各种蒸汽的停留时间、摩尔比、流速、浓度以及反应温度来调节纳米TiO2粒径和粒子形状,这种工艺可获得平均原始粒径为10~150nm,比表面积为50~300m2·g- l的非晶形TiO2纳米材料粒子。其工艺特点是操作温度较低,能耗小,对材质要求不是很高。并且可以连续化生产。 3.5 TiCl4高温气相水解法

该法是将TiCl4气体导人高温的氢氧火焰中进行气相水解,其化学反应式为;

TiCl4(g) +2 H2(g)+ O2(g)= TiO2(g)+ 4HCl(g) 该工艺制备的纳米粉体产品纯度高,粒径小。表面活性大,分散性好,团聚程度较小。其工艺特点是过程较短,自动化程度高。但因其过程温度较高.腐蚀严重、设备材质要求较严,对工艺参数控制要求准确,因此产品成本较高,一般厂家难以接受。 3.6 钛醇盐气相分解法

1 电阻炉热裂解法

nTi(OC4H9)4(g) = nTiO2(s) +2nH2O(g) + 4nC4H8(g)

反应温度一般控制在500一800 ℃ ,所得TiO2粒径<100 nm,此法容易获得锐钛型或混晶型TiO2 。

2激光诱导热解法

用聚焦脉冲CO2激光辐照TiCl4 + O2体系,在聚焦辐照的高温条件下(焦点区最高温度

达1000 ℃以上),获得了非晶态TiO2,其微观结构是絮状,内部疏松,是微小颗粒无序堆积的”疏松体”,其比表面积大,吸附能力强,反常的是在乙醇中易分散,在水中却不易分散

3.7 TiCl4 气相氧化法

利用氮气携带带TiCl4蒸汽,预热到435℃后经套管喷嘴的内管进人高温管式反应器. O2预热到870℃后经套管喷嘴的外管也进入反应器,二者在900~1400℃下反应生成的TiO2微粒经粒子捕集系统,实现气固分离。该工艺目前还处于试验阶段,其优点是自动化程度高,可制备优质粉体。

TiCl4(g)+O2 (g) =TiO2 (g)十2Cl2 (g)

nTiO2 (g) = nTiO2 (s) 3.8 蒸发-凝聚法制纳米TiO2

将平均粒径为3 μm的工业TiO2轴向注人功率为60 kW的高频等离子炉的Ar-O2混合等离子矩中,在大约10000 K的高温下,粗粒子TiO2汽化蒸发,进人冷凝膨屈长罐中降压、急冷得10~50 nm 的TiO2纳米材料 。 4 其他方法

4.1 超重力法制备纳米TiO2

主要包括水合TiO2悬浊液的制备和TiO2晶体缎烧成型2个过程:(1)将一定量的TiCl4在冰水浴中缓慢溶解于去离子水中,防止温度过高自发水解,再将溶液倒入带刻度的容器中标定浓度,将配好的溶液倒人到储槽内,启动离心泵将其泵人旋转填充床中,待流速稳定后扩通入氨气开始反应,用调频变运胜导导调节旋转填充床转子的转速,当pH值达到设定值时停止通入氨气,中止反应,并从出出口得到产物浆料,此料液便是水合TiO2悬浮液。(2)对悬浮液进行真空抽滤、滤饼洗涤、100℃干燥、锻烧等后续工艺处理,得到纳米TiO2粉体。 4.2 超临界相法(SC法)

溶液中合成超细TiO2分别是在3个实验反应器中完成的,这些反应器填充了近临界密度的异丙醇和0.4mol·L-1的醇钛盐溶液。乙醇和异丙醇的临界温度Tc分别为241℃和238.4℃,与醇钛盐气相热解的温度Tc = 265℃相差不远,特别适合作临界相流体,临界相流体有近似液体的密度和高溶剂能,但低的粘度和高扩散率几乎与气体接近,这些性质有利于分子碰撞且能够增加反应动力,能产生高的成核率。此法溶液浓度很低.可以避免粒子间的进一步凝集,低压下超临界溶液作为气体被除去,得到了于燥的粉末,不再需要液固的分离步骤。

将异丙醇-异丙醇钛盐溶液在280℃加热2 h反应即可完全,这与醇钛盐气相热解温度相近,由超临界法所得固体为锐钦型结构。粒径为30~60 nm,热处理后不发生结块。而用气相热分解法制TiO2 ,最初所得晶粒很好(<20 nm ),但最终强烈结块。超临界法同溶胶-凝胶法比较,免除了沉淀与干燥步骤,在缎烧过程之前,不需要进一步热处理。SC法制的锐钛型TiO2较溶胶一凝胶法制的锐钦型稳定,例如,SC,900℃加热4 h,20%为金红型TiO2;

溶胶一凝胶法.600℃加热4 h.,20%为金红型TiO2。 4.3其它方法

惰性气体原位加压法(IGC)、喷涂-电感耦合等离子体法、高频等离子化学相沉积法(RF-PCVD)等等。 5 结束语

综上所述, TiO2纳米材料的制备方法很多,大约二十种左右,就目前而言,这些制备方法各有其优缺点。此外,根据TiO2纳米材料的用途的不同。其制备方法也有差异。随着现代高新科技的开发,TiO2纳米材料的制备方法将会越来越多,而且在制备工艺上一集能耗上将会越来越优越。在研究制备工艺的同时,改进现有的合成工艺.寻求粉体质量好、操作简便且易于工业化大规模生产、成本低廉的合成新工艺,应该是努力的目标。对纳米粉末微观结构的研究还有待于进一步深入,对TiO2纳米材料徽粉特有的化学、物理机械性能,应从理论、徽观结构人手,研究它们产生的机理。总之,随着纳米材料体系和各种超结构体系研究的开展和深人,TiO2超细粒子的制备技术将会得到日益改进。 参考文献

[1] 韩跃新,印万忠,王泽红,袁致涛·矿物材料·北京:科学出版社2006

[2] 王俊尉等·纳米二氧化钛制备方法研究·化工技术与开发·2006,10:(12~15) [3] Fujishi. Nature,1972,238,37 [4] 范崇政,肖建平,丁延伟. 纳米二氧化钛的制备与光催化反应进展 .科学通报,2001,4 [5] 邓捷,吴立峰.钛白粉应用手册. 北京:化学工业出版社,2005,1 [6] 张玉龙, 纳米复合材料手册. 北京:化学工业出版社 2005,7 [7] 翟庆洲,纳米技术. 北京:兵器工业出版社, 2005,5 [8] Chen Q,Qian Y,Zhang Y. Mater Sci. Technol,1996,12:211 [9] 姜洪泉,王鹏,线恒泽. 低量Yb3+掺杂的TiO2复合纳米粉体的制备及光催化活性. 化学学报,2006,64(2):146 [10] 郭俊怀,沈星灿,郑文君,陈芳. 载银纳米TiO2光催化降解水中有机污物. 应用化学,2003,20(5):420 [11] 陈晓青,杨娟玉,蒋新宇,宋江锋. 掺铁TiO2纳米微粒的制备及光催化性能. 应用化学,2003,20(1):73~75 [12]沈杰,沃松涛,崔晓莉,蔡臻伟,章壮健. 射频磁控溅射制备纳米TiO2薄膜的光电化学行为. 物理化学学报,2004,20(10):1191~1194 [13] 曹茂盛,关长斌,徐甲强. 纳米材料导论. 哈尔滨:哈尔滨工业大学出版社,2001,91 [14] 倪星元,沈军,张志华. 纳米材料的理化特性与应用. 北京:化学24

第三篇:氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一:

由天然鳞片石墨反应生成氧化石墨,大致分为 3 个阶段,低温反应:在冰水浴中放入大烧杯,加入 110mL 浓 H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至 4℃左右。加入 -100目鳞片状石墨 5g,再加入 2.5g NaNO3,然后缓慢加入 15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应 90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应 30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入 220mL 去离子水,加热保持温度 70~100℃左右,缓慢加入一定双氧水 (5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至 BaCl2检测无白色沉淀生成,说明没有 SO42-的存在,样品在 40~50℃温度下烘干。H2SO

4、NaNO

3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与 KMnO4反应时间足够长。如果在中温过程中加入 KMnO4,一开始温度会急剧上升,很难控制反应的温度在 32~40℃。技术路线图见图 1。

方法二:Hummers 方法

采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。 趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。 方法三:修正的Hummers方法

采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO

4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

方法四:超声辅助Hummers法制备氧化石墨烯

该方法主要包含了低温、中温、高温3个反应阶段。研究表明[8]:低温反应主要发生硫酸分子在石墨层间插层;中温反应主要发生石墨的深度氧化;高温反应过程则主要发生层间化合物的水解反应。低温反应插层充分,中温反应深度氧化完全,高温反应水解彻底,是获得层间距较大氧化石墨的有效途径之一,这种层间距较大的氧化石墨不仅有利于其他分子、原子等插入层间形成氧化石墨插层复合材料,而且易于被剥离成单层氧化石墨,为进一步制备单层石墨烯打下基础。 1.2.1Hummers法制备氧化石墨烯

低温反应:量取23mL浓硫酸倒入烧杯,烧杯放入冰浴中冷却至4℃以下,称取1g石墨粉和0.5g硝酸钠放入烧杯,1h以后缓慢加入3g高锰酸钾,控制温度不超过10℃,反应时间共约2h;中温反应:把烧杯移至恒温水浴锅,水浴温度控制在38℃反应0.5h,保持搅拌;高温反应:在所得混合液中缓慢加入80mL的去离子水,保持混合液温度~95℃反应30min,期间保持适度搅拌;高温反应后加入约60mL去离子水中止反应,加入15mL(30Vol%)的双氧水,待反应约15min后再加入40mL(10Vol%)的盐酸溶液。低速离心洗涤去除过量的酸及副产物,将洗涤后呈中性的氧化石墨分散于水中,超声震荡剥离40min,超声结束后在2500r·min-1转速下离心30min,上层液即是氧化石墨烯悬浊液。 1.2.2预氧化-Hummers法制备氧化石墨烯

将30mL浓H2SO4,10gK2S2O8,10gP2O5置于三口烧瓶中,加热至80℃后加入20g石墨粉后保温6h,自然冷却至室温后,稀释,抽滤,洗涤直至中性,室温下自然干燥。取1g预处理过的样品进行Hummers法制备氧化石墨烯(见1.2.1)。 1.2.3低中温超声辅助Hummers法合成氧化石墨烯

低温反应:量取23mL浓硫酸倒入烧杯,烧杯放入冰浴中冷却至4℃以下,称取1g石墨粉和0.5g硝酸钠放入烧杯,开启超声,1h以后缓慢加入3g高锰酸钾,关闭超声并开始搅拌,控制温度不超过10℃,反应时间共2h;中温反应:把烧杯移至水浴锅,开启超声,水浴温度控制在38℃反应0.5h;高温反应:把所得混合液缓慢加入约100mL的低温去离子水中,接着将以上混合液置于~95℃水浴中反应30min,期间保持适度机械搅拌;高温反应后加入60mL去离子水中止反应,随后加入25mL(30Vol%)的双氧水,待反应约15min后再加入40mL(10Vol%)的盐酸溶液溶解。低速离心洗涤去除过量的酸及副产物,将洗涤后呈中性的氧化石墨分散于水中,超声振荡剥离40min,超声结束后在2500r·min-1转速下离心30min,上层液即是氧化石墨烯分散液。

1.2.4低温超声辅助Hummers法合成氧化石墨烯

除把中温反应的超声振荡改为搅拌以外,其他均与1.2.3合成工艺相同。 1.2.5中温超声辅助Hummers法合成氧化石墨烯

除在低温反应阶段只使用搅拌(不使用超声振荡)以外,其他均与1.2.3合成工艺相同。 方法五:温老师的方法

The 500-mesh flake graphite (1 g) and NaNO3(0.75 g) were dissolved in 75 mL 98 wt % H2SO4 under magnetic stirring in ice-water bath and KMnO4(4.5 g) were added gently. After completion of the addition, the reaction mixture was stirred continuously for 2 h. Then, the reaction was allowed to react for 5 days at room temperature. Afterward, KMnO4(2.25 g) was added gradually to the reaction mixture within 2 h under an ice water bath and then keep the reaction for another 5 days. After raising the temperature to 90 C, 140mL 5 wt % H2SO4 was added gradually to the reaction mix-ture under magnetic stirring for 2 h. The temperature was then decreased to 60 C, and 3 mL 30 wt % H2O2 was added to the reaction product. The as-prepared GO was purified by repeated centrifugation and washing process according to the literature. 1

第四篇:铝土矿的选别与氧化铝的制备方法---阅微草堂

氧化铝的制备方法大致有:拜耳法(A/S>8-10)适合低硅比的三水铝石型、联合法(A/S=5-7)、烧结法(A/S=3.5-5)

(A/S=铝硅比) 铝土矿主要资源分布:山西、河南、贵州、广西,储量世界第八 我国铝土矿主要矿石类型:主要为高硫、高硅低铝硅比一水硬铝石型。 所以我国铝土矿选别工艺主要是有两大任务:脱硫和脱硅 脱硅选矿工艺

(一):铝土矿脱硅按浮选可分为正浮选和反浮选 正浮选:浮选铝矿物的有效捕收剂有脂肪酸和磺酸盐类;调整剂有六偏磷酸钠、丹宁酸、焦磷酸钠、碳酸钠等。

试验研究表明:当矿石磨至-200目占95%,碳酸钠和硫化钠做为调整剂,水玻璃、六偏磷酸钠按比例配制做为抑制剂,用氧化石蜡皂做为捕收剂,浮选脱硅效果较好。

反浮选:是把高岭石、伊利石、叶腊石等含硅矿物和石英浮选成泡沫产品,由于入选粒度细、矿浆粘度大,导致分散剂、捕收剂耗量大,而且选别回收率低、铝土矿矿物损失大。

脱硅选矿工艺

(二):化学法脱硅工艺有焙烧-氢氧化钠溶出脱硅法,氢氧化钠直接溶出-分选脱硅法,均采用氢氧化钠浓度低于20%的稀碱溶液处理,前者的缺点是焙烧作业能耗高,后者由于溶出矿浆浓度低,碱耗量较大。杨波[1]等人提出用高浓度碱常压高温浸取铝土矿脱硅技术,在氢氧化钠浓度50%,碱矿比2.5,浸出温度135℃ ,脱硅时间5~20min,获得铝土矿精矿A/S大于12。该法简化了整体氧化铝生产工艺,缩短了流程,有望使氧化铝生产成本大大降低。 脱硅选矿工艺

(三):絮凝脱硅适用于细粒嵌布、含泥较多的一水铝石型铝土矿,将矿石细磨至-5μm占30%~40%,然后添加调整剂苏打和苛性钠、分散剂六偏磷酸钠,再使用聚丙烯胺聚合物进行选择性絮凝,使悬浮物和沉淀物分离。

铝土矿脱硫的方法:有浮选法、碱性铝酸盐溶液浮选法、电位调控浮选法、碱石灰烧结法、添加脱硫剂的氧化铝湿法除硫、焙烧法等。吕国志等人[2]提出高硫铝土矿的焙烧预处理除硫方法,原矿含硫1.82%,在焙烧温度750℃ ,焙烧时间60min的条件下,矿石含硫降至0.70%以下,符合氧化铝工业生产要求;焙烧矿在溶出温度为220℃左右时溶出1h,氧化铝溶出率高于97%,说明铝土矿焙烧法处理高 硫型铝土矿是可行的。硫元素以SO2的形式生成,直接排放会造成环境污染,若增加必要的处理设备设施,会造成设备成本提高。主要的含硫矿物是黄铁矿、磁黄铁矿,黄铁矿是分布最广泛的硫化物,易 于用浮选法选别,但黄铁矿在氧存在的条件下其表面会部分发生氧化,其可浮性大大降低。通过对河南西部某高硫铝土矿浮选除硫试验,含硫矿物进入泡沫产品,铝土矿留在矿浆中,含硫矿物的浮选受到矿浆碱度、矿浆浓度、矿石粒度、捕收剂用量和种类的影响较大,试验结果表明,用丁基钠黄药-丁基铵黑药做为捕收剂,合计用量在200~400g/t,起泡剂用量在30~35g/t,氢氧化钠作为矿浆碱度调整剂,PH=9.5~10.5之间,矿浆浓度15%~20%,入选粒度-150目占85%的条件下,一次精选精矿硫品位<0.40%,铝土矿含硫量符合工业要求,氧化铝回收率达89.5%。

第五篇:实验教案 培养基的制备

实验一 培养基的制备

一目的要求

1 明确培养基的配制原理

2 通过对基础培养基的配制,掌握配制培养基的一般方法和步骤 二 基本原理

不同培养基中含有不同的微生物生长所需要的营养物质,其可供微生物生长繁殖用,为微生物提供C源、能源、N源和维生素。在配制固体培养基时还要加入一定量琼脂作凝固剂。琼脂在常用浓度下96度溶化,实际应用时,一般在沸水中或下面垫以石棉网煮沸溶化,以免烧焦,琼脂在40度时凝固,通常不被微生物分解利用,固体培养基中琼脂含量根据琼脂的质量和气温的不同有所不同。 牛肉膏蛋白胨培养基:

牛肉膏:3.0g,蛋白胨10.0g,NACl5.0g,水1000ml,pH 7.2-7.4. 马铃薯培养基是霉菌的基本培养基,培养基配方如下: 马铃薯 100g 蔗糖 10g 琼脂 10g 水500ml pH 自然 三器材:

1试剂或溶液:马铃薯、蔗糖、琼脂、蒸馏水。

2仪器或其它用具:试管、三角瓶、烧杯、玻璃棒、天平、牛角勺,纱布、麻绳、牛皮纸、高压灭菌锅 四操作步骤 1称量:

依次称取马铃薯块、蔗糖、,切碎的琼脂放入三角瓶中并加入500ml蒸馏水 2 把三角瓶放入锅中,锅盖好后放在电热炉上加热,等琼脂溶解后取出三角瓶 3过滤:趁热用多层纱布过滤,去除里面的杂质 4分装:将配制好的培养基分装入试管。

5加塞:分装完后在试管口塞上塞子,以阻止外界微生物进入培养基造成污染,并保证有良好的勇气性能。

6包扎:用牛皮纸再包扎瓶口,以防灭菌时弄湿棉塞。 7灭菌:用高压蒸汽锅在0.1MP下灭菌20min 8搁置斜面:趁热将试管里的培养基斜面,注意斜面的长度大约为试管长度的1/2 9无菌检查 五:注意事项

1培养基配制后,必须立即灭菌

2分装过程中,注意不要使培养基沾在管口上,以免沾在塞子上而引起污染

实验二

革兰氏染色法

一目的要求

1学习并初步掌握革兰氏染色法

2了解革兰氏染色法的原理及其在细菌分类鉴定中的重要性 二基本原理

革兰氏染色法是1884年丹麦病理学家christain Gram 创立的而后作了些改进,革兰氏染色法是细菌学中最重要的鉴别染色法。 革兰氏染色法的基本步骤是:先用初染剂结晶紫进行染色,再用碘液媒染,然后用乙醇脱色,最后用复染剂复染。经此方法染色后,细胞保留初染剂蓝紫色的细菌为革兰氏阳性菌。如果细胞中初染剂被脱色剂洗脱而细菌染上复染剂的颜色,该菌属于革兰氏阴性菌。 革兰氏染色法将细菌分为革兰氏阳性和革兰氏阴性,是由这两类细菌细菌细胞壁的结构和组成不同决定的。实际上,当用结晶紫初染后,像简单染色法一样,所有细菌都被染成初染剂的蓝紫色,碘作为媒染剂,它能结晶紫结合成结晶紫-碘复合物,从而增强了染料与细菌的结合力,当用脱色剂处理时,两类细菌的脱色效果是不同的,革兰氏阳性细菌的细胞壁主要由肽聚糖形成的网状结构组成,壁厚、类脂含量低,用乙醇脱色时细胞壁脱水,使肽聚糖的网状结构孔径缩水,透性降低,从而合结晶紫-碘复合物不易被洗脱,而保留在细胞内,经脱色和复染后仍保留初染剂 的蓝紫色,革兰氏阴性菌则不同,由于其细胞壁肽聚糖较薄、类脂含量高,所以当脱色处理时,类脂质被乙醇溶解,细胞壁透性增大,使结晶紫-碘复合物比较容易被洗脱出来,用复染剂复染后,细胞被染上复染剂的红色。 三器材

1菌种 大肠杆菌

2染色剂:革兰氏染色液

(1)草酸铵结晶紫:A 液:结晶2g:95%乙醇20ml;

B 液:草酸铵0.8g;蒸馏水80ml;

混合AB两液,静置48h后使用() (2)卢戈氏碘液

碘片1g;碘化钾2g;蒸馏水30ml; (3)95%乙醇

(4)番红复染液:番红25g;95%乙醇 100ml 取上述配好的番红乙醇溶液10ml和 80ml蒸馏水混匀即成。 3仪器或其他用具

显微镜 酒精灯 载玻片 接种环 蒸馏水 四 操作步骤 1制片

(1)涂片:取载玻片,各滴一小滴蒸馏水于玻片中央,有接种环无菌操作挑取菌苔于水滴中,混合 并涂成薄膜。 (2)干燥:室温自然干燥

(3)固定:涂面朝上,通过2~3次 2 初染

滴加结晶紫染色1-2Min,水洗 3 媒染

用碘液冲去残水,并用碘液覆盖1min,水洗

4 用滤纸吸去玻片上的残水,将玻片倾斜,在魄背景下,用滴管流加95的乙醇脱色,直到流出的乙醇无紫色时,立即水洗,脱色时间一般20-30min 5复染

用番红复染2min,水洗。并用吸水纸吸干玻片上的残水。 6镜检

干燥后,用显微镜观察。

菌体被当成蓝紫色的是革兰氏阳性菌,被染成红色的革兰氏阴性菌。 实验三

酵母菌的形态观察及死活细胞的的鉴别

一目的要求

1观察酵母菌的形态及出芽生殖方式,学习区分酵母菌死活的实验方法 2 掌握酵母菌的一般特征及其与细菌的区别 二基本原理

酵母菌是不运动的单细胞真核微生物,共大小通常比常见细菌大几倍甚至十几倍,大多数酵母以出芽方式进行无性繁殖,有的分裂繁殖有性繁殖通过接合产生子囊孢子,本实验 通过美蓝染水浸片来观察酵母的形态和出芽生殖方式。美蓝是一种无毒性的染料,它的氧化型呈现蓝色,还原型无色。用美蓝对酵母的活细胞进行染色时,由于细胞的新陈代谢作用,细胞内具有较强的还原能力,能使美蓝由蓝色的氧化型 变为无色的还原型 ,因此,具有还原能力的酵母活细胞是无色的,而死细胞或代谢微弱的衰老细胞则呈蓝色或淡蓝色,借此即可对酵母菌的死细胞和活细胞进行鉴别。 三器材

1菌种:酿酒酵母培养约2天的纯培养物 2溶液或试剂:吕氏碱性美蓝染色液

3仪器或其他用具:显微镜,载玻片 盖玻片 四操作步骤

1美蓝浸片的观察

(1)在载玻片中央加一滴吕氏碱性美蓝染色液,然后按无菌操作用接中环挑取水量酵母菌放在染液中,混合均匀。

(2)用镊子取一块盖玻片,先将一边与菌液接触,然后慢慢将盖玻片放下,使其不着边际在菌液上

(3)将制片放置约3分钟,镜检。先用低倍镜,然后用高倍镜观察酵母的形态,和出芽情况。并根据颜色区别死活细胞。

(4)染色约0.5小时后再次进行观察,注意死细胞的数量是否增加。 2 水—碘液浸片的观察

在载玻片中央加一小滴革兰氏染液用碘液,然后在其上加3小滴水,取少许酵母菌苔放在水—碘液中混匀,盖上盖玻片后镜检。 五实验结果

观察的酵母菌的形成特征:

实验四 霉菌的形态观察

一实验目的

1学习并掌握观察霉菌的形态的基本方法 2了解甲类常见霉菌的基本形态特征。 二实验原理

霉菌可产生复杂的分枝的菌丝体,分基内菌丝和气生菌丝,气生菌丝生长 到一寂阶段分化产生繁殖菌丝,由繁殖菌丝产生孢子。霉菌菌丝体及孢子的形态特征是识别不同种类霉菌的重要依据。霉菌菌丝和孢子的宽度通常比细菌和放线菌粗得多。常是细菌菌体的几倍到几十倍 ,因此,用低倍显微镜即可观察。观察霉菌的形态有多种方法,常用的有下列三种:直接制片观察法、载玻片培养观察法,玻璃纸培养观察法。 三实验器材

1菌种:黄典霉 青霉 产黄青霉 黑根霉 2溶液与试剂:吕氏美蓝染色液 蒸馏水

3仪器或其他用具:显微镜 载玻片 盖玻片 接种环 滤纸 四实验步骤

1在载玻片中央加一滴吕氏碱性美蓝染色液,然后按无菌操作用接种环挑取少量霉菌放在吕氏碱性美蓝染色液中,混合均匀。

2用镊子取一块盖玻片,先将一边与菌液接触,然后慢慢将盖玻片放下使其盖在菌液上。 3将制片放置约3MIN后镜检,先用低倍镜,后用高倍镜,观察霉菌的形态。 五结果

六思考:霉菌的孢子有哪些形态。

实验五

微生物的分离纯化

一目的要求

掌握倒平板的方法和几种常用的分离纯化微生物的基本操作技术 二基本原理

从混杂的微生物群体中获得只含一种工某一株微生物的过程为微生物的分离与纯化。常用的方法有:

1简易单细胞挑取法

它需要特制的显微镜操纵器或其它显微技术,因而其使用受到限制。简易单孢子分离法是一种不需要显微单孢操纵器,直接在普通显微镜下利用低倍镜分离单孢子的方法,它采用很细的毛细管吸取较稀的萌发的孢子悬液滴在培养皿盖的内壁上,在低倍镜下逐个检查微滳,将只含有一个萌发孢子的微滴放在一小块营养琼脂片,使其发育成微菌落,再将微菌落转移2到培养基中,即可获得公由单个孢子发育而成的纯培养。 2平板分离法

该方法操作简便,普遍用于微生物的分离与纯化,其基本原理包括两方面:

(1)选择适合待分离微生物生长条件,如营养、酸碱度、温度和氧等要求或加入某种抑制剂造成只利于该微生物生长,而抑制其它微生物生长的环境,从而淘汰一些不需要的微生物。 (2)微生物在固体培养基上生长形成的单个菌落,可以是由一个细胞繁殖而成的集合体,因此可以通过挑取单菌落而获得一种纯培养,获取单个菌落的方法,可通过稀释涂布平板或平板划线等技术完成。 三器材

1菌种:米曲霉

2培养基:牛肉膏蛋白胨培养基 马铃薯培养基 3溶液或试剂:试管、三角瓶、琼脂

4仪器或其他用具:无菌玻璃棒、无菌吸管、接种环、无菌培养基、样品 四操作步骤 平板划线分离法

1倒平板:按稀释涂布平板法倒平板,并用记号笔标明培养基名称,样品编号和实验日期。 2划线:在近火焰处左手拿皿底,右手拿接种环,挑取样品悬液一环在平板上划线。划线的方法很多,但无论采用哪种方法,其目的都是通过划线将样品在平板上进行稀释,使之形成 单个菌落。常用的划线方法有下列二种:

(1)用接种环以无菌操作挑取样品悬液一环,先平板培养基的一边作第一次平等划线3~4条,再转动培养基约70度角,并将接种环上的剩余烧掉,待冷却后通过第一次划线部分作第二次平行划线,再用同样的方法通过第二次划线部分作第三次划线 和第四次交平行划线。划线完毕后,盖上培养皿,倒置于温箱培养。

(2)挑取有样品的接种环在平板培养基上作连续划线。划线完毕后,盖上培养皿盖,倒置下载培养箱中。

(3)挑菌落 同稀释涂布平板法,一直到分离的微生物认为纯化为止。 五思考题。

上一篇
下一篇
返回顶部