风力发电电气课程设计
第一篇:风力发电电气课程设计
风力发电课程设计
1.风力发电发展的现状
1.1世界风力发电的现状
近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。
到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。
欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。
有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。
1.2我过风力发电的发展现状
我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。
自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。
我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。
2 风力发电机
2.1恒速恒频的笼式感应发电机
恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。
恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。
2.2变速恒频的双馈感应式发电机
变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。
双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。
双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。
2.3变速变频的直驱式永磁同步发电机
变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力 需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。
直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。
如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特征,那么直驱式永磁同步发电机组也属于变速恒频的风力发电系统。
3介绍相关风力发电控制技术
3.1风力发电控制系统的目的
由于风力发电机组是复杂多变量非线性系统,具有不确定性和多干扰等特点。风力发电控制系统的基本目标分为4个层次:保证可靠运行,获取最大能量,提供良好电力质量,延长机组寿命。控制系统实现以下具体功能:
(1) 运行风俗范围内,确保系统稳定运行。
(2) 低风速时,跟踪最优叶尖速比,实现最大风能捕获。
(3) 高风速时,限制风能捕获,保持风力发电机组的额定输出功率。
(4) 减少阵风引起的转矩峰值变化,减少风轮机械应力和输出功率波动。
(5) 控制代价小。不同输入信号的幅值应有限制,比如桨距角的调节范围和变桨距速率有一
定限制。
(6) 抑制可能引起机械共振的频率。
(7) 调节机组功率,控制电网电压、频率稳定。
3.2风力发电控制系统
除了风轮和发电机这两个核心部分,风力发电机组换包括一些辅助部件,用来安全、高效的利用风能,输出高质量的电能。
(1)传动机构
虽说用于风力发电的现代水平轴风力机大多采用高速风轮,但相对于发电的要求而言,风轮的转速其实并没有那么高。考虑到叶片材料的强度和最佳叶尖速必的要求,风轮转速大约是18~33r/min。而常规发电机的转速多为800r/min或1500r/min。
对于容量较大的风电机组,由于风轮的转速很低,远达不到发电机发电的要求,因而可以通过齿轮箱的增速作用来实现。风力发电机组中的齿轮箱也称增速箱。在双馈式风力发电机组中,齿轮箱就是一个不可缺少的重要部件。大型风力发电机的传动装置,增速比一般为40~50。这样,可以减轻发电机质量,从而节省成本。
也有一些采用永磁同步发电机的风力发电系统,在设计时由风轮直接驱动发电机的转子,而省去齿轮箱,以减轻质量和噪声。
对于小型的风电机组,由于风轮的转速和发电机的额定转速比较接近,通常可以将发电机的轴直接连到风轮的轮毂。
(2)对风系统(偏航系统)
自然界的风方向多变。只有让风垂直地吹向风轮转动面,风力机才能最大限度地获得风能。为此,常见的水平轴的风力机需要配备调向系统,使风轮的旋转面经常对准风向。
对于小容量风力发电机组,往往在风轮后面装一个类似风向标的尾舵,来实现对风功能。 对于容量较大的风力发电机组,通常配有专门的对风装置——偏航系统,一般由风向传感器
和伺服电动机组合而成。大型机组都采用主动偏航系统,即采用电力或液压拖动来完成对风动作,偏航方式通常采用齿轮驱动。
一般大型风力机在机舱后面的顶部有两个互相独立的传感器。当风向发生改变时,风向标登记这个方位,并传递信号到控制器,然后控制器控制偏航系统转动机舱。
(3)限速装置
风轮转速和功率随着风速的提高而增加,风速过高会导致风轮转速过高和发电机超负荷,危及风力发电机组的运行安全。限速安全机构的作用是使风轮单位转速在一定的风速范围内基本保持不变。
(4)液压制动装置
机组的液压系统用于偏航系统刹车、机械刹车盘驱动,当风速过高时使风轮停转,保证强风下风电机组安全。
机组正常时,需维持额定压力区间运行。 液压泵控制液压系统压力,当压力下降至设定值后,启动油泵运行,当压力升高至某设定值后,停泵。
4风力发电技术发展趋势的展望
4.1风力发电的发展方向
风力发电技术是目前可再生能源利用中技术最成熟的、最具商业化发展前景的利用方式,也是本世纪最具规模开发前景的新能源之一合理利用风能,既可减少环境污染,有可减轻目前越来越大的能源短缺给人类带来的压力。
未来风力发电技术将向着以下几个方向发展。
(1)单机容量大。主流的新增风力机的单机容量将从750KW~1.5MW向2MW甚至更大的容量发展。目前世界上单机容量最大的风机,为5MW风力发电机,海上风力发电的6MW风电机组也已研制成功。
(2)风电场规模增大。将从10MW级向100MW、1000MW级发展。
(3)从陆地向海上发展。
(4)生产成本进一步降低。
4.2未来风力发电的展望
据专家们测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。“风力12”、欧洲风能联合会、能源和发展论坛以绿色和平组织于2002年联合发表了一篇报告,以上述估计值作为基础,制定了风能的目标:到2020年,风力发电将占到全球发电总量的12%。为了达到这个目标,需要建立总容量大约为1260GW的风能装置,每年可发电3000TW·h左右。这相当于现在欧盟的用电量。世界风能协会预计,从世界范围来看,预计2020年,风电装机容量会达到1231GW。年发电量相当于届时世界电力需求的12%,与上述报告的结论一致。风电会向满足世界20%电力需求的方向发展,相当于今天的水电,有研究显示到2040年大致可以实现这一目标。届时将创造179万个就业机会,风电成本下降40%,减少排放100多亿吨二氧化碳。因此,在建设资源节约型社会的国度里,风力发电已不再是无足轻重的补充能源,而是最具有商业化发展前景的新兴能源产业。
第二篇:风力发电机组安装调试课程标准
《风力发电机组安装调试》学习领域(课程)标准
课程编号:
适用专业:风能与动力技术 机电一体化(风电方向)
课程类别:岗位核心学习领域
修课方式:必修
教学时数:60学时
一、课程的性质和任务
(一)课程定位
《风力发电机组安装调试》学习领域是风能与动力技术专业、机电一体化技术专业、机械制造及其自动化专业的一门核心学习领域课程。通过本课程的学习,使学生掌握机械零部件装配的基础知识,学会风力发电机机舱、叶轮、发电机等部件的装配工艺,熟练操作钳工、电工,学会各种典型工具的使用方法。
使学生在完成课程的同时,在创新意识、团队协作、交流表达、信息处理、分析问题与解决问题等各方面得到提高。
(二)学习目标
通过《风力发电机组安装调试》的学习,使学生掌握以下专业能力、方法能力、社会能力。
1.专业能力目标
(1)掌握机械零部件加工的基础知识:
(2)掌握机组零部件组装;
(3)学会配线工艺制定及装配;
(4)学会典型零件的装配工艺的编制方法;
(5)熟练检测工具的运用;
(6)熟练掌握风机装配的基本方法;
(7)学会装配部件的检测调试方法;
(8)学会典型工具的使用方法。
2.方法能力目标
(1)能独立制定工作计划并进行实施;
(2)具有独立进行分析、设计、实施、评估的能力;
(3)具有获取、分析、归纳、交流、使用信息和新技术的能力;
(4)具有自学能力、理解能力与表达能力;
(5)具有将知识与技术综合运用与转换的能力;
(6)具有综合运用知识与技术从事程度教复杂的技术工作的能力。
3.社会能力目标
(1)具有较强的口头与书面表达能力、人际沟通能力。
(2)具有较强的团队精神和协作精神。
(3)具有良好的心理素质和克服困难的能力。
- 1 -
(三)前导课程
《机械制图》、《电气装配规划与实践》、《机械零部件加工与检测》、《风电场建设基础》。
(四)后续课程
《风电机组控制技术》、《风力发电机组运行维护》、《风电场管理》等。
二、课程内容标准
(一)学习情境划分及学时分配
(二)学习情境描述
三、课程实施建议
(一)课程教学模式
《风力发电机组装配》课程教学,以学生学习为中心,优化组合、综合应用多种教学媒体,构建"真实的虚拟"学习情境,构建雄厚的教学设备,真正实现"教、学、做"一体化,强化对学生的实践技能培养。通过参与一个完整的项目,充分调动学生的积极性,加强学生的动手能力,让学生在专业知识、文化素养以及适应社会环境的能力都得到很大的提高,运用任务驱动,让学生主动的参与学习,具备一定的专业技能。
(二)教学方法
1.循循善诱,激发兴趣(引导文法)
引导文法是以完整的行为方式为导向,这一行为方式就是技术工人的工作活动。通过教师的循循善诱,让学生很快入门,激发学生的学习兴趣。
2.教师主导,学生主体(四步教学法)
自主预习、交流展示、点评升华、当堂检测四步组成,其中自主预习是基础,交流展示和点评升华是关键,当堂检测是巩固和运用,四步教学模式,把课堂给了学生,让他们有了展现自己的舞台,人人动起来,气氛活起来,体现教师的主导作用,突出学生的主体地位,是一种以学生的发展为主线的教学思想,符合学生认识发展的规律。
3.教师主导,启发引导(示范法)
以教师为主,用示范教学法启发学生对知识点、技能点的理解,在教师引导下边学边做,边做边学,体会通过项目掌握重、难点知识的乐趣。
4.学生主体,教师辅导法(讲授法)
以学生独立操作为主,教师讲解为辅,对学生在操作过程中出现的问题提出解决建议,培养学生独立思考、独立操作能力。
5.典型项目分析(案例教学法、任务驱动)
选取典型的机械零部件,从用户需求分析、原理图的制作、焊接与调试等,提供完整工作过程。
6.分组讨论(讨论法)
将学生分成自主学习小组,教师安排学习项目,小组同学在组长的带领下通过讨论、分析、小组研讨、交流等形式分享学习经验。
(三)教学条件 1.标准与规范
学校计划建立一个可容纳60人同时教学的风机模拟实训实验室,可提供学生完成风力发电机组机舱的装配、风力发电机组发电机的装配、风力发电机组叶轮的装配工作,同时实训室还配备有投影仪、电脑、等基础设备为学生的学习提供物质条件。
2.教学设施
本专业已建成电工电子实训室、模拟电路实训室、数字电路实训室、自动控制实训室、单片机实训室、PLC实训室、数控加工实训室、风机模拟实训实验室等12个实训室、占地面积4020平方米,设备资产600余万元;校外实训基地5个:新疆金风科技有限公司、酒泉风能设备制造产业园、甘肃电力明珠集团向阳风电场、酒泉华电子有限公司、玉门石油管理局。
3.实训条件
校内实训基地风力发电机装配实训室1个,校外实训基地5个,并与新疆金风科技有限公司、甘肃电力明珠集团向阳风电场等10家公司建立了长期的校企合作关系,为广大风电专业学生更扎实的学习风电知识提供了有力的保证,满足了校外见习、校外实训和顶岗实习的需要,同时也为学生提供了很好的就业平台。
(四)课程考评方法
本课程采用任务驱动教学法,为实施过程考核提供了条件。采用过程考核(任务考核)与课程考核(期末考评)相结合的方法,强调过程考评的重要性。过程考核占70分,课程考核占30
分(具体见下表), 取代了依靠一次期末考试来确定成绩的方式。
1.素质考核
素质考核由指导的考核教师完成,素质考核总分为10分。参考以下考核表进行考核。
学生素质考核表
2.任务单考核
每个学习任务有学生学习的任务工单,考查学生完成任务工单的情况。参考任务工单考核表进行。
任务单考核=成果评定×60%+学习过程评价30%+团队合作评价10%
(1)成果评定=自我评分分值20%+班组评分分值×30%+教师评分分值×50%。 (2)学习过程评价=自我评分分值20%+班组评分分值×30%+教师评分分值×50%。 (3)团队合作评价=自我评分分值20%+班组评分分值×30%+教师评分分值×50%。 3.成绩计算
成绩=素质考核成绩总和/15+(任务单考核成绩总和/15)*60%+期末考核成绩*30%。
四、参考文献
(一)教材:
风力发电机组装配,校本教材。
(二)实训指导书
风力发电机组装配实训指导书,校本教材。
(三)参考资料 企业内部资料。
执笔人:方占萍 审核人:程明杰 复审人:李玉宏 审批人:冯黎成
开始执行时间: 2011 年 9月1日
第三篇:大型风力发电机组变桨系统的设计
陕 西 科 技 大 学
毕业设计(论文)任务书
电气与信息工程学院 电气工程及自动化专业 09班级 学生 谭浩然毕业设计(论文)题目:MW级风力发电机组变桨距系统研究完成期限:从2013 年02月 25 日起到 2013 年 06 月 16 日 课题的意义及培养目标:随着环保问题的日益突出,能源供应的渐趋紧张,风力发电作为一种清洁的可再生能源的发电方式,已越来越受到世界各国人民的欢迎和重视。同时,风力发电又是新能源发电技术中最成熟和最具规模开发条件的发电方式之一。因此,近几年来,我国的风力发电事业得到了很快的发展。本课题以目前风力发电系统中较普遍使用的MW级风力发电机组为研究对象,以计一套风力发电机组的变桨控制系统,实现自动最大风能捕获、危险风速保护等控制要求。最后,再通过仿真验证其可行性。经过本系统的设计实践,使学生可以很好的与目前的先进工程实践接轨。使所学的专业课及专业基础课的知识由理论转向实践,使所学的文化知识得到较好的实际应用和验证提升学生进入社会适
应工程工作环境的能力。设计(论文)所需收集的原始数据与资料:所需的资料、参考书籍如下:
1、电机及拖动基础(主要是同步发电机部分),电力拖动自动控制系统,电器
控制及PLC等技术书籍
2、STEP7软件。
3、S7-300PLC编程手册。
4、AUTOCAD绘图软件。
课题的主要任务(需附有技术指标要求):
1、熟悉风力发电机的原理。
2、在掌握软件编程及控制工艺的基础上,设计风力发电机自动变桨控制系统。
3、编写软件程序。
5、在设计完成后,验证可行性。设计进度安排及完成的相关任务(以教学周为单位):
学生:日期:指导教师:日期:教研室主任:日期:
第四篇:发电厂电气部分》课程见习报告
——— 电气工程及其自动化专业
一、 见习目的和要求
1.了解电能生产的全过程及主要电气设备的构成、型号、参数、结构、布置方 式,对电厂生产过程有一个完整的概念。
2.熟悉该电厂主接线连接方式、运行特点;
3.初步了解电气二次接线、继电保护及自动装置,巩固和加强所学理论知识,为今后走上工作岗位打下良好基础。 同时学习工人阶级的优秀品质,做到行动军事化、生活集体化,培养正确的 劳动观念,为今后走向基层、服务基层奠定思想基础。
二、见习的主要内容
1、初步了解发电厂、变电站生产的全过程。
2、深刻了解发电厂、变电站主要设备;包括发电机、变压器、断路器、互感器、隔离开关、电抗器、母线的型式、构造特点、主要参数及作用, 对其他辅助设备也应有所了解。
3、着重了解发电厂、变电站的电气主接线形式
4、了解配电装置的布置形式及特点,并了解安全净距的意义。
5、了解控制屏、保护屏的布置情况及主控室的总体布置情况。
6、了解发电厂、变电站的防雷保护措施。
7、了解发电厂动力部分主要设备及形式、特点、参数,对电厂生产有完整的概念。
三、发电厂及变电站简介:
恩施土家族苗族自治州天楼地枕水力发电公司(简称天电),于1999年 3月8日根据《恩施州政发[1999]8号》文正式组建,由原州天楼地枕水电工程管理处与州天楼地枕水力发电厂合并而成,属于州电力总公司的子公司。公司位于恩施市屯堡乡境内,是清江干流梯级开发的第六级,属径流式电站。装机容量 25.2Mw(4×6.3 Mw) ,年利用小时数 5324h ,设计年发电量 1.34 亿 Kw.h ,多年平均年发电量 1.1亿 Kw.h
220千伏旗峰坝变电站是我州第一座220千伏变电站,采用了无人值班、少人值守的运行管理模式,所有的设备监视和开关、刀闸的操作全部集中到集控中心,以减轻变电站值守人员的压力
四、安规的学习
1. 一般安全措施
A. 任何人进入生产现场都应该戴安全帽,穿工作服.在生产厂区不要靠近转动的机器.
B. 变配电站及发电厂遇有电气设备着火时,应立即将有关设备的电源切断,然后进行救火,消防器材的配备,使用,维护,消防通道的配置等应遵守DL5027-1993<电气设备典型消防规程>的规定.
C. 所谓运行中的电气设备是指全部带有电压,一部分带由于电压或一经操作即带电的电气设备.
D. 电气设备分为高压电气设备和低压电气设备,高压电气设备为电压等级在1000V以上的,低压电气设备为电压等级在1000V以下的
2.高压设备工作的基本要求
A无论高压设备是否带电,工作人员不得单独移开或越过遮拦进行工作,若有必要移开遮拦时,应该有监护人在场,并且要符合安全距离;10KV的安全距离为0.7m35KV的安全距离为1.0m,110KV的安全距离为1.5m,220KV的安全距离为3.0m
B高压电气设备的绝缘部分禁止用手触摸.
C高压设备发生接地时,室内不得接近故障点4m以内,室外不得接近故障点8m以内,进入上述范围人员应穿绝缘靴接触设备的外壳和构架时,应戴绝缘手套.五、实习体会及心得
通过一天的见习,给我的最大体会就是观念的改变,以前我印象中发电站、变电站是那么神秘,更是不能近距离接触,怕有生命危险。不过现在不一样了,我知道了只要在安全距离和安全操作下是没有危险的。在发电厂的见习中,见习人员带我们参观了电站主接线、主变压器,了解到变压器油的作用,还知道了整座电站所用到的各种设备及其数量。在实际的线路中没有我们书本上所说还标有U、V、W三相,它是用不同的颜色来分别代替U、V、W三相,它实际是用黄色代表U相,绿色代表V相,红色代表W相。不同的电压等级有不同的避雷器,棕色的是6.3KV侧的避雷器,绿色+棕色的是10KV侧的避雷器。
参观完发电车间后我们来到了微机主控制室,技术员首先给我们介绍的是开关柜,在开关柜内我们可以看到它的连接线路:母线、隔离刀闸、断路器、电压互感器、避雷器。断路器是真空断路器操作系统是电池操作。开关柜旁边是联络柜,联络柜是连接各种继电保护装置的设备它的主要作用是在发生故障时能够迅
速切断电源减少故障范围,联络柜有带负荷刀闸能够带负荷操作。联络柜旁边是步进微机调速器起作用是控制水轮机组。这里可以控制整个发电厂,还有这里监控知道舞水河流域的降水量。还有可以监控全厂。如果发电厂出现紧急事故。都是这里发出指令来处理。在这里,我们从大屏幕上可以轻易的看到全厂的运行状况,这一点给我的体会就是科学技术代替人为操作是那么快捷、方便、安全。
在恩施220千伏旗峰坝变电站,不仅见识到了厂区整齐划一的设备陈列,更见识到了工作人员的热情以及工作严谨的作风,让我认识到了在电力行业严谨是安全的最好保障。随着变电站值班员带领,再穿过控制楼的走廊,焕然一新的变电站呈现在我们面前。整个设备区静悄悄的,沿着洁净的操作小道,我们似乎正一路欣赏着一件件艺术品。州电力总公司技术人员为我们介绍改造的经过,那一脸的笑意流露出他们心中的欣慰和成就感。至此,州电力公司所辖的7座220千伏变电站全部采用先进的综合自动化技术,迈入了集中控制、无人值班的崭新历史阶段。
在电站的输电线路变电网处,我认识了六氟化硫断路器,第一次看到了高压隔离开关,以及电压互感器、电流互感器,和避雷装置。技术员还给我们讲解了各种开关的使用和我们在开启与关闭整个发电装置的程序。讲解了隔离开关、断路器QF、继电器、熔断器FU、电压(流)互感器等,电压(流)互感器便于测量线路中的电压、电流。电流互感器的二次侧是不允许短路的。
走进控制室,只见焕然一新的控制和保护屏上的数字在闪烁。同行的州电力总公司电力试验研究所所长方许杰打开其中的一面屏,只见密集的各色导线整齐地排列在屏的两端,简洁有序而且美观。
在参观最后一处后,我怀着对已掌握的知识的回顾和对未知的知识的疑惑离开了,我相信随着专业知识的增长,此刻不能解决的问题会慢慢的变得清晰明了。
通过一天的见习,我相信所获得的实践经验对我终身受益,在我毕业后的实际工作中将不断的得到验证,我会不断的理解和体会实习中所学到的知识,在未来的工作中我将把我所学到的理论知识和实践经验不断的应用到实际工作来,充分展示自我的个人价值和人生价。值相信这次见习给我们带来的经历一定可以为我们将来的学习和生活提供很大的帮助,为自己以后的工作和生活积累了更多丰富的知识和宝贵的经验。同时所以自己也应该继续勤奋求知,增长自己的专业知识。
第五篇:世界风力发电发展态势及我国风力发电所需的关键原料
据专家估算:全球风能1700太瓦,大洋、高山和保护区域的风力是采集不到的,除去这些以及一些风力达不到开发要求的地区,依然有40~85太瓦的风能,目前世界只利用了0.02太瓦的风能。风力发电是风能利用的主要形式,风力发电成本低于其他新能源,并有进一步降低成本的可能;风力发电是最清洁最安全的,目前世界风力发电发展速度超过其他新能源发展,未来风力发电很可能成为全球电力的主要来源之一。据我国专家估算,我国可开发利用风能至少十几亿千瓦,快速推进风力发电是我国实现减排目标的必要途径之一。
根据美国发布的可再生能源标准(RES),到2012年美国可再生能源占10%,2025年占25%。2004~2008年美国新安装风力发电机新增风电年均增长率为29%。2008年新增风电占新增可再生能源的42%。美国政府承诺长期支持风力发电,投资数十亿美元制造风电涡轮机和建设智能电网, 2009~2029年安装风力发电机将每年新增风力发电能力4亿瓦~16亿瓦,到2030年风力发电总容量累计增加到305亿瓦,届时风力发电满足电力需求的20%。欧盟风力发电装机总容量56535兆瓦。丹麦风力发电占本国电力的20%,西班牙占13%,葡萄牙占12%,爱尔兰9%,德国8%。德国规划到2020年可再生能源发电占25~30%,德国于1991年制定法律鼓励发展可再生能源,主要是风力发电,德国风力发电涡轮机生产能力占世界22%,未来几年内将在海岸建大型风力发电场。
2006年我国风电装机总容量仅2588兆瓦,2008年增加到12121兆瓦,年均增长率为116%。据中国风能协会预测, 2010年我国风电总装机容量达20亿瓦,2020年达到80亿瓦,2030年达到180亿瓦,2050年达到500亿瓦。我国政府将强力支持建设智能电网,解决风电输送问题,未来风电将成为我国电力的主要来源之一。
一台大型风力发电涡轮机需要稀土2吨,铜5吨,铝3吨,钢300吨; 3兆瓦大型风机转子叶片长约54米,玻璃纤维/碳纤维混合增强复合材料叶片最轻的达13.4吨,单只叶片需要玻璃纤维和碳纤维约6吨。2009年我国风电装机总容量已经达到22亿瓦,根据我国风电发展规划,到2020年风电装机总容量达到80亿瓦,需新增风电装机容量58亿瓦,若以3兆瓦风力发电涡轮机计算, 2010~2020年期间我国需要新安装大型风力发电涡轮机19333台,累计需要稀土金属4万吨,铜10万吨,铝6万吨,钢600万吨,玻璃纤维和碳纤维约36万吨。到2030年风电装机总容量达到180亿瓦,需新增风电装机容量122亿瓦,已3兆瓦风力发电涡轮机计算,2020~2030年我国需要新安装大型风力发电涡轮机40666台,累计需要稀土金属约8.2万吨,铜20.33万吨,铝12.19万吨,钢1219.98万吨,玻璃纤维和碳纤维约73.2万吨,所需稀土主要是钕,用于生产稀土永磁材料。2009年我国风电装机总容量已经超过2010年的规划目标,估计我国风力发电规模会远远超过规划目标,2010~2020年期间我国风力发电行业对稀土金属实际需求量很可能是按规划估算需求量的2倍以上,对玻璃纤维和碳纤维实际需求量是估算的2倍多。为此建议国土资源部相关部门应充分调查我国风力发电行业现状和发展计划,准确的估算我国风力发电行业对稀土金属等产品的需求量,以保证正确控制稀土金属及其氧化物生产总量,为风电行业发展提供足够的高质量的矿物原料。