范文网 总结报告 [用加权余量法分析圆形遂道]加权余量法ppt(通用)

[用加权余量法分析圆形遂道]加权余量法ppt(通用)

[用加权余量法分析圆形遂道]加权余量法ppt摘 要:采用在低级近似情况下可获得较高精度的加权余量法对圆形隧道可能承受的各种荷载情况进行分析,给出了相应的权残方程和内力的通式以及它们的实用算式.算例表明:计算简便易行,控制内力降低,在规律性上。

[用加权余量法分析圆形遂道]加权余量法ppt

  摘 要:采用在低级近似情况下可获得较高精度的加权余量法对圆形隧道可能承受的各种荷载情况进行分析,给出了相应的权残方程和内力的通式以及它们的实用算式.算例表明:计算简便易行,控制内力降低,在规律性上更好地体现了圆拱形结构的良好力学性能,较现行方法有明显的优越性.
   关键词:加权余量法圆形隧道 权残方程 内力计算
   中图分类号:U45文献标识码:A 文章编号:
   一、前 言
   水力工程涵洞和铁路隧道等工程广泛采用着圆拱形结构其合理计算应遵循与周围地层共同工作原理.不计弹性抗力的自由变形方法 ,原则上可用于松软地层中的隧洞分析,然而,鉴于松软地层含义的相对性,如预先认定不免带有一定的盲目性.计入假设的弹性抗力方法 ,则由于该抗力不尽符合共同工原理,所得结果将具有一定的任意性.把周围地层的连续弹性抗力仅简化为若干法向弹性支承反力的链杆法,则需将结构分割较多的直梁单元才会有较好的精度,而这将使各项工作量加大;重要的是该法还没有也难以考虑切向弹性抗菌素力的作用.加权余量法在我国正日益广泛地被引入结构分析领域[4, 5] 由于其原理统一,计算简便准确、,并容易在计算机上实施等优点,为同时考虑法向和切向弹性抗力时地层中圆形隧道的合理计算提供了便利条件.
   二、控制微分方程和边界条件
   图1示地层中单位厚度圆形隧道结构的计算简图,承受竖向荷载qV、水平侧向茶载qH(θ) 、自重G和水压力或灌浆压力ρ0(θ)等主动荷载的作用;结构、荷尔蒙载均为正对称,顶点O为坐标原点,RH为计算半径,h为壁厚,H为顶点水头,rs为水的容量;上部两侧各为45°范围为不计弹性抗力的脱离区.脱离区的范围与结构在qV、qH(θ)以及G等作用下产生的变形状态有关,一般只能用迭代法逐次接近;根据大量试验和工程实践经验总结,该脱离区一般约为2×34°-2×45°, 我国水工隧洞设计规范推荐2×45°,故本文将此值作为已知条件引入计算简中.
   从图1中截取微分单元RHdθ(图2),其中w(θ)为法向位移;V(θ)为切向位移;kw w(θ)、kV V(θ)分别为法向、切向弹性抗力,kw 、kV分别为法向、切向地层弹性抗力系数;各项荷载、抗力及结构的弯矩M(θ) 、剪力Q(θ)和轴力N(θ)均为以图示方向为正; rh为钢盘混凝土容重.
  
  
   可忽略轴力产生的切向应变:
  
   由于结构对称,故只需对右半部分进行分析,在=0和θ=π处应满足如下位移和应力边界条件:
  
  
  三、伽辽金权残方程通式及内力通式
  
  设法向位移试函数
  = s°(m)sin(mθ)Amcos(mθ) (10)
  满足式(9)所有边界条件,并使C=0
  由于qV在θ=π/2处和弹性抗力在θ=π/4处出现间断性,故将式(10)代入式(8)所得残函数有3种形式:
  在0-π/4子域:
  
  
  式中:
   s° (m)=m5-2m3+m; s (m)= s° (m)+ ƒ(mkw+kv/m)(12)
   取权函数集Wj(θ)=cos(jθ)(j=1,2,3,…,n),相应其任一项的全域伽辽金权残方程为
  WjRIdθ= Wj RI1dθ+ Wj RI2dθ+Wj RI3dθ=0(13)
  将式(11)代入后,注意到(图1):
  qH(θ)=0.5(qH1+ qH2) -0.5(qH2-qH1)cosθ,
  sin2θcos(jθ)dθ=[sinθ+sin(2+j)θ]/2,
   qH(θ)sin2cos(jθ)dθ=( qH1+ qH2)sin2cos(jθ)dθ-( qH1+ qH2)×(sinθcos(jθ)dθ+sin3θcos(jθ)dθ);
   (2)p0(θ)=rs(H+ RH-RHcosθ),=rsRHsinθ,
   cos(jθ)dθ=rsRHsinθcos(jθ)dθ.
   于是得到全域伽辽金权残方程(式13)的通式:
   (s° (m) sin(mθ)cos(jθ)dθ+s(m)sin(mθ)cos(jθ)dθ)Am
   =ƒ(-2rh+ rsRH)sinθcos(jθ)dθ+ƒ( qH1-qH2)( sinθcos(jθ)dθ, (14)
   (j=1,2,3,…,n)
   式中:
   sin(mθ)cos(jθ)dθ= (15)
  
  将对应于各权函数Wj(j=1,2,3,…,n)的权残方程依次组合并写成求解Am的矩阵形式为:
   Am=[Km,j ] Tj (16)
   当选定试函数项数m后,权函数项数即一定(j=m),所以, Am的系数矩阵[Km,j ]和荷载项列阵 Tj 均可预先由式(14)列出供实用;划去相应的行和列,它还可以用于项数小于m的情况.
   由式(6)、(3)、(1)分别列出内力 通式为:
  
  
  在求0-π/4域的轴力时,应令km=0;求π/2-π域的轴力时,应令qv=0。
   计算表表明,试函数取至8项已有较稳定结果能满足工程设计要求,兹列出m≤8相应的式(16)、(17)的具体生生世世[见附录式(18)-(22)]以便实际使用.
   四、算例
   图3岩层中钢筋混凝土圆形隧洞结构,RH=1.35m,h=0.2m,EI=1.69×104kNm2,rh=24.53kN/m3,rs=9.18kN/m3,qv=333.43 kN/m,H=10m, kw= kv=1.96×104 kN/m3 .计算其内力。
   解:取m=1-8,由式(12)算出s°(m)和s(m),汇同其它已知值由式(16),(18),(19)解得
  
  
  将Am代入式(20)-(22)即得各项内力值(表1).表中还列出了目前常用的假定地层抗力法(O.EByraeba法)和自由变形法以及本法不计切向弹性抗力( kv=0)的结果,以资比较.
  
  
   参考文献
  [1] 范钦珊工程力学2005年.8月
   [2] 王焕定结构力学2006年.8月
   [3] 计志也,泥浆中空蚀特性研究.第三届全国空化学术讨论会论文集,1995年.
   [4] 陆力,固液两相流中的空泡溃灭研究.清华大学水利系博士研究生论文,1988年.
  [5] 黄继汤,空化现象研究中高速摄影技术的应用,清华大学学报,1988年第29卷第5期.
  作者简介:
  张新忱 男 汉族1996年毕业于天津大学土木工程系, 现在河北省沧州市建筑设计研究院有限公司任结构专业副总工程师,沧州职业技术学院客座教授。
   注:文章内所有公式及图表请以PDF形式查看。

上一篇
下一篇
返回顶部